Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Chân trời

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đa thức một biến

By admin 18/04/2023 0

Giải SBT Toán lớp 7 Bài 2: Đa thức một biến

Giải trang 27 Tập 2

Bài 1 trang 27 Tập 2:Hãy cho biết biểu thức nào sau đây là đa thức một biến:

A = –4;    B = 2t + 9; C=3x−42x+1;      N=1−2y3; M = 4 + 7y – 2y3.

Lời giải:

Biểu thức A = –4 là đa thức một biến vì đây là biểu thức đại số chỉ gồm một số.

Biểu thức B = 2t + 9 là đa thức một biến của biến t.

Biểu thức C=3x−42x+1  không phải là đa thức một biến.

Biểu thức N=1−2y3=13−23.y  là đa thức một biến của biến y.

Biểu thức M = 4 + 7y – 2y3 là đa thức một biến của biến y.

Bài 2 trang 27 Tập 2:Cho đa thức P(x) = 3x2 + 8x3 – 2x + 4x3 – 2x2 + 9. Hãy sắp xếp các đơn thức theo lũy thừa giảm dần của biến.

Lời giải:

Ta có:

P(x) = 3x2 + 8x3 – 2x + 4x3 – 2x2 + 9

        = (8x3 + 4x3) + (3x2 – 2x2) – 2x + 9

        = 12x3 + x2 – 2x + 9.

Vậy sắp xếp các đơn thức theo lũy thừa giảm dần của biến ta được P(x) = 12x3 + x2 – 2x + 9.

Bài 3 trang 27 Tập 2:Cho đa thức P(x) = 4x2 + 2x3 – 15x + 7x3 – 9x2 + 6 + 5x. Hãy nêu bậc, hệ số cao nhất và hệ số tự do của đa thức P(x).

Lời giải:

Ta có:

 P(x) = 4x2 + 2x3 – 15x + 7x3 – 9x2 + 6 + 5x.

        = (7x3 + 2x3) + (4x2 – 9x2) + (–15x + 5x) + 6

        = 9x3 – 5x2 – 10x + 6.

P(x) có bậc là 3 (vì số mũ lớn nhất của biến x là 3), hệ số cao nhất là 9 (vì hệ số của x3 là 9) và hệ số tự do là 6.

Bài 4 trang 27 Tập 2:Hãy tính giá trị của các đa thức:

a) P(x) = –3x3 + 8x2 – 2x + 1 khi x = –3.

b) Q(y) = 7y3 – 6y4 + 3y2 – 2y khi y = 2.

Lời giải:

a) Khi x = –3 thì P(x) có giá trị là:

P(–3) = –3 . (–3)3 + 8 . (–3)2 – 2 . (–3) + 1

          = 81 + 72 + 6 + 1

          = 160.

Vậy khi x = –3 thì P(x) có giá trị là 160.

b) Khi y = 2 thì Q(y) có giá trị là:

Q(2) = 7 . 23 – 6 . 24 + 3 . 22 – 2 . 2

         = 56 – 96 + 12 – 4

         = –32.

Vậy khi y = 2 thì Q(y) có giá trị là –32.

Bài 5 trang 27 Tập 2:  Hỏi x=−45  có phải là một nghiệm của P(x) = 5x + 4 không?

Lời giải:

Thay x=−45  vào P(x) ta có:

P−45=5.−45+4=−4+4=0

 

Do đó  là nghiệm của đa thức P(x).

Bài 6 trang 27 Tập 2:Cho đa thức Q(t) = 3t2 + 15t + 12. Hãy cho biết các số nào trong tập hợp {1; –4; –1} là nghiệm của Q(t).

Lời giải:

• Với t = 1 thay vào Q(t) ta có:

Q(1) = 3 . 12 + 15 . 1 + 12

         = 3 + 15 + 12

         = 30.

Do đó t = 1 không là nghiệm của Q(t).

• Với t = –4 thay vào Q(t) ta có:

Q(–4) = 3 . (–4)2 + 15 . (–4) + 12

          = 48 – 60 + 12

= 0.

Do đó t = –4 là nghiệm của Q(t).

• Với t = –1 thay vào Q(t) ta có:

Q(–1) = 3 . (–1)2 + 15 . (–1) + 12

          = 3 – 15 + 12

= 0.

Do đó t = –1 là nghiệm của Q(t).

Vậy các số –4 và –1 là các nghiệm của Q(t).

Giải trang 28 Tập 2

Bài 7 trang 28 Tập 2:Đa thức M(t) = –8 – 3t2 có nghiệm không? Tại sao?

Lời giải:

Cách 1:

Ta có t2 ≥ 0 với mọi t.

Nên –3t2 ≤ 0 với mọi t.

Do đó –3t2 – 8 ≤ –8 với mọi t.

Hay M(t) = –8 – 3t2 < 0 với mọi t.

Nên M(t) ≠ 0 với mọi t.

Suy ra không có giá trị nào của t để M(t) = 0.

Vậy M(t) không có nghiệm.

Cách 2:

Ta có: M(t) = 0

Do đó –8 – 3t2 = 0

Hay 3t2 = –8

Suy ra t2 =  (vô lí vì t2 ≥ 0 với mọi t).

Vậy M(t) không có nghiệm.

Bài 8 trang 28 Tập 2:Trong môn bóng chuyền, một cú phát bóng có thể được mô tả bởi biểu thức h = –4,9t2 + 3,8t + 1,6, trong đó h là chiều cao của quả bóng so với mặt sân được tính bằng mét và t là thời gian kể từ khi phát bóng được tính bằng giây. Tính chiều cao h khi t = 0,4 giây.

Lời giải:

Với t = 0,4 thay vào biểu thức h = –4,9t2 + 3,8t + 1,6, ta có:

h(0,4) = –4,9 . (0,4)2 + 3,8 . 0.4 + 1,6

          = –0,784 +  1,52 + 1,6

          = 2,336.

Vậy chiều cao h là khoảng 2,336 m.

Bài 9 trang 28 Tập 2:Cho một mảnh vườn hình chữ nhật có chu vi là 80 mét với chiều dài bằng x mét. Hãy viết biểu thức biểu thị diện tích mảnh vườn. Tính diện tích mảnh vườn khi x = 25 m.

Lời giải:

Nửa chu vi mảnh vườn là: 80 : 2 = 40 (m).

Chiều rộng mảnh vườn là: 40 – x (m).

Diện tích mảnh vườn là:

S = x . (40 – x) = – x2 + 40x (m2).

Khi x = 25 thì S = – 252 + 40 . 25 = 375 (m2).

Vậy khi x = 25 m thì mảnh vườn có diện tích là 375 m2.

Bài 10 trang 28 Tập 2:Chiều cao của một pháo hoa so với mặt đất được mô tả bởi biểu thức h = –4,8t2 + 21,6t + 156, trong đó h tính bằng mét và thời gian t kể từ khi bắn được tính bằng giây (chỉ xét 0 < t < 2,2). Tính chiều cao h khi t = 2 giây.

Lời giải:

Với t = 2 thay vào biểu thức h = –4,8t2 + 21,6t + 156 ta có:

h(2) = –4,8 . 22 + 21,6 . 2 + 156

       = –19,2 + 43,2 + 156

       = 180 (m)

Vậy khi t = 2 thì chiều cao h = 180 m.

Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 1 : Biểu thức số, biểu thức đại số

Bài 2 : Đa thức một biến

Bài 3 : Phép cộng và phép trừ đa thức một biến

Bài 4 : Phép nhân và phép chia đa thức một biến

Bài tập cuối chương 7

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Đa thức một biến (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Next post

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Số giá trị nguyên của tham số để phương trình fx3−2×2+5x=m2−2m  có đúng ba nghiệm phân biệt là

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1
  6. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học
  7. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực
  8. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả
  9. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 2
  10. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Hình hộp chữ nhật – hình lập phương
  11. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
  12. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  13. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
  14. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 3
  15. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Các góc ở vị trí đặc biệt
  16. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tia phân giác
  17. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hai đường thẳng song song
  18. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Định lí và chứng minh định lí
  19. Sách bài tập Toán 7 Bài tập cuối chương 4 (Chân trời sáng tạo)
  20. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Thu thập và phân loại dữ liệu
  21. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Biểu đồ hình quạt tròn
  22. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Biểu đồ đoạn thẳng
  23. Sách bài tập Toán 7 Bài tập cuối chương 5 (Chân trời sáng tạo)
  24. Chương 6: Các đại lượng tỉ lệ
  25. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tỉ lệ thức – Dãy tỉ số bằng nhau
  26. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đại lượng tỉ lệ thuận
  27. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Đại lượng tỉ lệ nghịch
  28. Sách bài tập Toán 7 Bài tập cuối chương 6 (Chân trời sáng tạo)
  29. Chương 7: Biểu thức đại số
  30. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Biểu thức số, biểu thức đại số
  31. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Phép cộng và phép trừ đa thức một biến
  32. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Phép nhân và phép chia đa thức một biến
  33. Sách bài tập Toán 7 Bài tập cuối chương 7 (Chân trời sáng tạo)
  34. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Góc và cạnh của một tam giác
  35. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tam giác bằng nhau
  36. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân
  37. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Đường vuông góc và đường xiên
  38. Sách bài tập Toán 7 Bài 5 (Chân trời sáng tạo): Đường trung trực của một đoạn thẳng
  39. Sách bài tập Toán 7 Bài 6 (Chân trời sáng tạo): Tính chất ba đường trung trực của tam giác
  40. Sách bài tập Toán 7 Bài 7 (Chân trời sáng tạo): Tính chất ba đường trung tuyến của tam giác
  41. Sách bài tập Toán 7 Bài 8 (Chân trời sáng tạo): Tính chất ba đường cao của tam giác
  42. Sách bài tập Toán 7 Bài 9 (Chân trời sáng tạo): Tính chất ba đường phân giác của tam giác
  43. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 8 trang 65, 66
  44. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Làm quen với biến cố ngẫu nhiên
  45. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Làm quen với xác suất của biến cố ngẫu nhiên
  46. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 9 trang 87, 88

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán