Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Chân trời

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đại lượng tỉ lệ thuận

By admin 18/04/2023 0

Giải SBT Toán lớp 7 Bài 2: Đại lượng tỉ lệ thuận

Giải trang 11 Tập 2

Bài 1 trang 11 Tập 2: Cho hai đại lượng x và y tỉ lệ thuận với nhau. Biết rằng khi x = 3 thì y = 9.

a) Tìm hệ số tỉ lệ của x đối với y.

b) Tính giá trị của y khi x = –7.

Lời giải:

a) Gọi hệ số tỉ lệ của x đối với y là k (k ≠ 0).

Do x và y tỉ lệ thuận với nhau nên suy ra k=xy.

Khi x = 3 và y = 9 ta có k=39=13.

Vậy hệ số tỉ lệ của x đối với y là  13 .

b) Theo câu a ta có công thức x=13y  suy ra y = 3x.

Khi  x = -7, ta có y = 3 . (-7) = -21.

Vậy y = -21.

Bài 2 trang 11 Tập 2: Cho hai đại lượng a và b tỉ lệ thuận với nhau. Biết rằng khi a = 5 thì b = –10.

a) Tìm hệ số tỉ lệ của b đối với a và biểu diễn b theo a.

b) Tìm hệ số tỉ lệ của a đối với b và biểu diễn a theo b.

Lời giải:

a) Gọi hệ số tỉ lệ của b đối với a là k (k ≠ 0).

Do hai đại lượng a và b tỉ lệ thuận với nhau nên ta có b = ka suy ra k=ba.

Khi a = 5 và b = – 10 ta có k=−105=−2.

Vậy hệ số tỉ lệ của b đối với a là – 2. Biểu diễn b theo a là b = – 2a.

b) Do b tỉ lệ với a theo hệ số tỉ lệ là – 2 (theo câu a)

Nên a tỉ lệ với b theo hệ số tỉ lệ là −12.

Vậy hệ số tỉ lệ của a đối với b là −12.  Biểu diễn a theo b là a=−12b.

Bài 3 trang 11 Tập 2: Cho x và y là hai đại lượng tỉ lệ thuận với nhau. Hãy tính các giá trị còn thiếu trong bảng sau rồi viết công thức tính y theo x.

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

Lời giải:

Do x và y là hai đại lượng tỉ lệ thuận với nhau nên ta có:

x1y1=x2y2=x3y3=…

 

Với x1 = –3 và y1 = 9 ta có −39=x2y2=x3y3=…  hay −13=x2y2=x3y3=…

Khi đó:

• x2 = -2 thì −13=−2y2  nên y2 = 3.−2−1  = 6;

• x3 = -1 thì −13=−1y3  nên y3 = 3;

• x4 = 1 thì −13=1y4  nên y4 = 3.1−1  = -3;

• x5 = 2 thì −13=2y5  nên y5 = 3.2−1  = -6.

Vậy ta điền các giá trị còn thiếu trong bảng như sau:

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

Ta có x1y1=x2y2=x3y3=…−13  suy ra ta có công thức tính y theo x là y = –3x.

Vậy công thức tính y theo x là y = –3x.

Giải trang 12 Tập 2

Bài 4 trang 12 Tập 2: Cho biết hai đại lượng P và V tỉ lệ thuận với nhau:

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

a) Tính các giá trị còn thiếu trong bảng trên.

b) Viết công thức tính P theo V.

Lời giải:

a) Do V và P là hai đại lượng tỉ lệ thuận với nhau nên ta có:

V1P1=V2P2=V3P3=…

 

Với V1 = 1 và P1 = 8,9 ta có 18,9=V2P2=V3P3=…

Khi đó:

• V2 = 2 thì 2P2=18,9  nên P2 = 8,9 . 2 = 17,8;

• V3 = 3 thì 3P3=18,9  nên P3 = 8,9 . 3 = 26,7;

• V4 = 4 thì 4P4=18,9  nên P4 = 8,9 . 4 = 35,6;

• V5 = 5 thì 5P5=18,9  nên P5 = 8,9 . 5 = 44,5.

Vậy ta điền các giá trị còn thiếu trong bảng như sau:

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

b) Ta có V1P1=V2P2=V3P3=…=18,9  (theo câu a)

Suy ra VP=18,9  hay P = 8,9V.

Vậy công thức tính P theo V là P = 8,9V.

Bài 5 trang 12 Tập 2: Cho biết x tỉ lệ thuận với y theo hệ số tỉ lệ k và y tỉ lệ thuận với z theo hệ số tỉ lệ q.

a) Hãy tính x theo y, tính y theo z.

b) Hãy tính x theo z.

Lời giải:

a) Do x tỉ lệ thuận với y theo hệ số tỉ lệ k nên ta có x = ky;

Do y tỉ lệ thuận với z theo hệ số tỉ lệ q nên ta có y = qz.

Vậy x = ky và y = qz.

b) Thay y = qz vào x = ky ta được: x = kqz.

Vậy x = kqz.

Bài 6 trang 12 Tập 2: Trong các trường hợp sau, hãy kiểm tra xem hai đại lượng đã cho có tỉ lệ thuận với nhau hay không.

a)

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

b)

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Khi u = 3 và v = -1,2 thì uv=3−1,2=30−12=−52=−2,5.

Khi u = 4 và v = -1,6 thì uv=4−1,6=40−16=−52=−2,5.

Khi u = 5 và v = -2 thì uv=−52=−2,5.

Khi u = 6 và v = -2,4 thì uv=6−2,4=60−24=−52=−2,5.

Khi đó ta có: uv=3−1,2=4−1,6=5−2=6−2,4=−2,5.

Vậy u tỉ lệ thuận với v theo hệ số tỉ lệ –2,5.

b) Khi m = -1 và n = 3 thì mn=−13.

Khi m = 3 và n = -8 thì mn=3−8=−38.

Ta có −13=−824≠−38=−924

Vậy hai đại lượng m và n không tỉ lệ thuận với nhau.

Bài 7 trang 12 Tập 2: Trong các  trường hợp sau, hãy kiểm tra xem hai đại lượng đã cho có tỉ lệ thuận với nhau hay không

a)

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

b)

Sách bài tập Toán 7 Bài 2: Đại lượng tỉ lệ thuận - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Khi x = -4 và y = 8 thì xy=−48=−12=−0,5.

Khi x = -3 và y = 6 thì xy=−36=−12=−0,5.

Khi x = -2 và y = 4 thì xy=−24=−12=−0,5.

Khi x = 1 và y = -2 thì xy=−12=−0,5.

Khi x = 2 và y = -4 thì xy=2−4=−12=−0,5.

Khi đó ta có: xy=−48=−36=−24=1−2=2−4=−0,5.

Vậy x tỉ lệ thuận với y theo hệ số tỉ lệ –0,5.

b) Khi z = 1 và t = 2 thì zt=12.

Khi z = 5 và t = 15 thì zt=515=5:515:5=13.

Ta có 12=36≠13=26

Vậy z và t không tỉ lệ thuận với nhau.

Bài 8 trang 12 Tập 2: Cúc và Trúc cùng nhau nuôi thỏ, Cúc nuôi 5 con, Trúc nuôi 4 con. Hai bạn bán được tổng cộng 1,8 triệu đồng. Tính số tiền mỗi bạn nhận được nếu chia tỉ lệ theo số thỏ mỗi bạn đã nuôi.

Lời giải:

Gọi số tiền bạn Cúc nhận được là x (triệu đồng), bạn Trúc nhận được là y (triệu đồng).

Do hai bạn bán được tổng cộng 1,8 triệu đồng nên x + y = 1,8.

Vì số tiền mỗi bạn nhận được tỉ lệ theo số thỏ mỗi bạn đã nuôi nên x5=y4.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x5=y4=x+y5+4=1,89=0,2.

 

Khi đó:

• x5=0,2  nên x = 0,2 . 5 = 1;

• y4=0,2  nên y = 0,2 . 4 = 0,8.

Vậy bạn Cúc nhận được 1 triệu đồng, bạn Trúc nhận được 0,8 triệu đồng.

Bài 9 trang 12 Tập 2: Hai lớp 7A và 7B quyên góp được một số sách tỉ lệ thuận với số học sinh của lớp, biết số học sinh của hai lớp lần lượt là 32 và 36. Lớp 7A quyên góp được ít hơn lớp 7B 8 quyển sách. Hỏi mỗi lớp quyên góp được bao nhiêu quyển sách?

Lời giải:

Gọi số sách lớp 7A quyên góp là x (quyển), số sách lớp 7B quyên góp là y (quyển).

Hai lớp 7A và 7B quyên góp được số sách tỉ lệ thuận với số học sinh của lớp, mà số học sinh của hai lớp lần lượt là 32 và 36 nên ta có x32=y36.

Do lớp 7A quyên góp được ít hơn lớp 7B 8 quyển sách nên y – x = 8.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x32=y36=y−x36−32=84=2.

 

Khi đó:

• x32=2  nên x = 2 . 32 = 64;

• y36=2  nên y = 2 . 36 = 72.

Vậy lớp 7A quyên góp được 64 quyển sách, lớp 7B quyên góp được 72 quyển sách.

Giải trang 13 Tập 2

Bài 10 trang 13 Tập 2: Một tam giác có ba cạnh tỉ lệ với 5; 12; 13 và có chu vi là 120 cm. Tính độ dài các cạnh của tam giác đó.

Lời giải:

Gọi x, y, z (cm) lần lượt là độ dài 3 cạnh của một tam giác.

Do chu vi tam giác là 120 cm nên x + y + z = 120.

Do tam giác có ba cạnh tỉ lệ với 5; 12; 13 nên x5=y12=z13.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x5=y12=z13=x+y+z5+12+13=12030=4.

 

Khi đó:

• x5=4  nên x = 4 . 5 = 20;

• y12=4  nên y = 4 . 12 = 48;

• z13=4  nên y = 4 . 13 = 52.

Vậy độ dài 3 cạnh của tam giác là: 20 cm, 48 cm, 52 cm.

Bài 11 trang 13 Tập 2: Tùng, Huy và Minh cùng trồng hoa cúc trong chậu để chuẩn bị bán tết. Tùng trồng được 6 chậu hoa, Huy trồng được 4 chậu hoa và Minh trồng được 5 chậu hoa. Bác Tư giúp các bạn bán hết số chậu hoa được tổng cộng 1,5 triệu đồng. Ba bạn quyết định chia tiền tỉ lệ với số chậu hoa trồng được. Hỏi mỗi bạn được chia bao nhiêu tiền?

Lời giải:

Gọi số tiền bạn Tùng, Huy, Minh lần lượt nhận được là x, y, z (triệu đồng).

Do tổng số tiền 3 bạn nhận được khi bán hết chậu hoa là 1,5 triệu đồng nên ta có: x6=y4=z5.

x + y + z = 1,5.

Do số tiền mỗi bạn nhận được tỉ lệ với số chậu hoa trồng được nên ta có:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x6=y4=z5=x+y+z6+4+5=1,515=0,1.

 

Khi đó:

• x6=0,1  nên x = 0,1 . 6 = 0,6 (triệu đồng) = 600 nghìn đồng;

• y4=0,1  nên y = 0,1 . 4 = 0,4 (triệu đồng) = 400 nghìn đồng;

• z5=0,1  nên y = 0,1 . 5 = 0,5 (triệu đồng) = 500 nghìn đồng.

Vậy số tiền mỗi bạn nhận được là: bạn Tùng 600 nghìn đồng, bạn Huy 400 nghìn đồng, bạn Minh 500 nghìn đồng.

Bài 12 trang 13 Tập 2: Cho biết mỗi lít nước tương có khối lượng 1,2 kg.

a) Giả sử x lít nước tương có khối lượng y kg. Hãy viết công thức tính y theo x.

b) Tính thể tích của 800 g nước tương.

Lời giải:

a) Vì 1 lít nước có khối lượng 1,2 kg nên x lít nước có khối lượng 1,2x kg.

Khi đó: y = 1,2x.

Vậy công thức tính y theo x là y = 1,2x.

b) Đổi: 800 g = 0,8 kg.

Do y = 1,2x nên x=y1,2 .

Do có 0,8g nước nên x=0,81,2=812=23≈0,67.

Vậy thể tích của 800 g nước tương là khoảng 0,67 lít.

Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 1 : Tỉ lệ thức – Dãy tỉ số bằng nhau

Bài 2 : Đại lượng tỉ lệ thuận

Bài 3 : Đại lượng tỉ lệ nghịch

Bài tập cuối chương 6

Bài 1 : Biểu thức số, biểu thức đại số

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Tính chất của dãy tỉ số bằng nhau (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Next post

Tìm số giá trị nguyên của m∈−2020;2020  để hàm số fx=x3−6×2+5+m  đồng biến trên 5;+∞ .

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1
  6. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học
  7. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực
  8. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả
  9. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 2
  10. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Hình hộp chữ nhật – hình lập phương
  11. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
  12. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  13. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
  14. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 3
  15. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Các góc ở vị trí đặc biệt
  16. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tia phân giác
  17. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hai đường thẳng song song
  18. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Định lí và chứng minh định lí
  19. Sách bài tập Toán 7 Bài tập cuối chương 4 (Chân trời sáng tạo)
  20. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Thu thập và phân loại dữ liệu
  21. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Biểu đồ hình quạt tròn
  22. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Biểu đồ đoạn thẳng
  23. Sách bài tập Toán 7 Bài tập cuối chương 5 (Chân trời sáng tạo)
  24. Chương 6: Các đại lượng tỉ lệ
  25. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tỉ lệ thức – Dãy tỉ số bằng nhau
  26. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Đại lượng tỉ lệ nghịch
  27. Sách bài tập Toán 7 Bài tập cuối chương 6 (Chân trời sáng tạo)
  28. Chương 7: Biểu thức đại số
  29. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Biểu thức số, biểu thức đại số
  30. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đa thức một biến
  31. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Phép cộng và phép trừ đa thức một biến
  32. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Phép nhân và phép chia đa thức một biến
  33. Sách bài tập Toán 7 Bài tập cuối chương 7 (Chân trời sáng tạo)
  34. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Góc và cạnh của một tam giác
  35. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tam giác bằng nhau
  36. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân
  37. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Đường vuông góc và đường xiên
  38. Sách bài tập Toán 7 Bài 5 (Chân trời sáng tạo): Đường trung trực của một đoạn thẳng
  39. Sách bài tập Toán 7 Bài 6 (Chân trời sáng tạo): Tính chất ba đường trung trực của tam giác
  40. Sách bài tập Toán 7 Bài 7 (Chân trời sáng tạo): Tính chất ba đường trung tuyến của tam giác
  41. Sách bài tập Toán 7 Bài 8 (Chân trời sáng tạo): Tính chất ba đường cao của tam giác
  42. Sách bài tập Toán 7 Bài 9 (Chân trời sáng tạo): Tính chất ba đường phân giác của tam giác
  43. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 8 trang 65, 66
  44. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Làm quen với biến cố ngẫu nhiên
  45. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Làm quen với xác suất của biến cố ngẫu nhiên
  46. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 9 trang 87, 88

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán