Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 7 – Cánh diều

Giải SGK Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng

By admin 20/04/2023 0

Giải bài tập Toán lớp 7 Bài 9: Đường trung trực của một đoạn thẳng

A. Câu hỏi trong bài

Giải Toán 7 trang 100 Tập 2

Câu hỏi khởi động trang 100 Toán 7 Tập 2: Hình 86 minh họa chiếc cân thăng bằng và gợi nên hình ảnh đoạn thẳng AB, đường thẳng d.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Đường thẳng d có mối liên hệ gì với đoạn thẳng AB?

Lời giải:

Khi chiếc cân thăng bằng thì đường thẳng d vuông góc với đoạn thẳng AB tại trung điểm của AB.

Hoạt động 1 trang 100 Toán 7 Tập 2: Quan sát Hình 87.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

a) So sánh hai đoạn thẳng IA và IB.

b) Tìm số đo của các góc I1, I2.

Lời giải:

a) Ta coi độ dài cạnh ô vuông nhỏ bằng 1 đơn vị.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Khi đó IA = 2 và IB = 2.

Do đó IA = IB.

b) Ta thấy đường thẳng d vuông góc với AB nên I^1=90°,I^2=90°.

Giải Toán 7 trang 101 Tập 2

Luyện tập 1 trang 101 Toán 7 Tập 2: Cho tam giác ABC và M là trung điểm của BC. Biết AMB^=AMC^. Chứng minh AM là đường trung trực của đoạn thẳng BC.

Lời giải:





GT

∆ABC,

M là trung điểm của BC,

AMB^=AMC^

KL

AM là đường trung trực của đoạn thẳng BC.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Vì AMB^ và AMC^ là hai góc kề bù nên AMB^+AMC^=180° (tính chất hai góc kề bù)

Mà AMB^=AMC^  (giả thiết) nên AMB^=AMC^=180°2=90° 

Suy ra  AM ⊥ BC.

Lại có M là trung điểm của BC (giả thiết)

Do đó AM ⊥ BC tại trung điểm M của BC nên AM là đường trung trực của BC.

Vậy AM là đường trung trực của BC.

Hoạt động 2 trang 101 Toán 7 Tập 2: Cho đoạn thẳng AB có trung điểm O, d là đường trung trực của đoạn thẳng AB, điểm M thuộc d, M khác O (Hình 90).

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Chứng minh rằng:

a) ∆MOA = ∆MOB;

b) MA = MB.

Lời giải:





GT

O là trung điểm của AB,

d là đường trung trực của đoạn thẳng AB,

M ∈ d, M ≠ O.

KL

a) ∆MOA = ∆MOB;

b) MA = MB.

Chứng minh (Hình 90):

a) Vì d là đường trung trực của đoạn thẳng AB (giả thiết)

Nên MO ⊥ AB tại O

Do đó tam giác MOA vuông tại O và tam giác MOB vuông tại O.

Xét ∆MOA (vuông tại O) và ∆MOB (vuông tại O) có:

MO là cạnh chung,

OA = OB (O là trung điểm của AB).

Do đó ∆MOA = ∆MOB (hai cạnh góc vuông).

Vậy ∆MOA = ∆MOB.

b) Vì ∆MOA = ∆MOB (chứng minh trên)

Nên MA = MB (hai cạnh tương ứng).

Vậy MA = MB.

Luyện tập 2 trang 101 Toán 7 Tập 2: Hình 91 mô tả mặt cắt đứng của một ngôi nhà với hai mái là OA và OB, mái nhà bên trái dài 3 m. Tính chiều dài mái nhà bên phải, biết rằng điểm O thuộc đường trung trực của đoạn thẳng AB.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Lời giải:

Do O thuộc đường trung trực của đoạn thẳng AB nên OA = OB (tính chất đường trung trực)

Mà OA = 3 m nên OB = 3 m.

Vậy chiều dài mái nhà bên phải là 3 m.

Hoạt động 3 trang 101 Toán 7 Tập 2: Cho đoạn thẳng AB có trung điểm O. Giả sử M là một điểm khác O sao cho MA = MB.

a) Hai tam giác MOA và MOB có bằng nhau hay không? Vì sao?

b) Đường thẳng MO có là đường trung trực của đoạn thẳng AB hay không? Vì sao?

Lời giải:

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

a) Xét ∆MOA và ∆MOB có:

OA = OB (O là trung điểm của AB),

MA = MB (giả thiết),

MO là cạnh chung

Do đó ∆MOA = ∆MOB (c.c.c).

Vậy ∆MOA = ∆MOB.

b) Vì ∆MOA = ∆MOB (chứng minh câu a)

Nên MOA^=MOB^ (hai góc tương ứng)

Mà MOA^+MOB^=180° (tính chất hai góc kề bù)

Do đó MOA^=MOB^=180°2=90°

Khi đó MO ⊥ AB tại trung điểm O của đoạn thẳng AB.

Vậy MO là đường trung trực của đoạn thẳng AB.

Giải Toán 7 trang 102 Tập 2

Luyện tập 3 trang 102 Toán 7 Tập 2: Cho tam giác ABC cân tại A.

a) Điểm A có thuộc đường trung trực của đoạn thẳng BC hay không? Vì sao?

b) Đường thẳng qua A vuông góc với BC cắt cạnh BC tại H. Đường thẳng AH có là đường trung trực của đoạn thẳng BC hay không? Vì sao?

Lời giải:

 

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

a) Tam giác ABC cân tại A (giả thiết) nên AB = AC.

Do AB = AC nên A nằm trên đường trung trực của đoạn thẳng BC.

Vậy A thuộc đường trung trực của đoạn thẳng BC.

b) Vì AH ⊥ BC tại H nên ∆ABH vuông tại H và ∆ACH vuông tại H.

Xét ∆ABH (vuông tại H) và ∆ACH (vuông tại H) có:

AB = AC (chứng minh trên),

AH là cạnh chung.

Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra HB = HC (hai cạnh tương ứng).

Mà H nằm giữa B và C nên H là trung điểm của BC.

Ta có AH vuông góc với BC tại trung điểm H của BC nên AH là đường trung trực của đoạn thẳng BC.

Vậy đường thẳng AH là đường trung trực của đoạn thẳng BC.

Hoạt động 4 trang 102 Toán 7 Tập 2: Dùng thước thẳng (có chia đơn vị) và compa vẽ đường trung trực của đoạn thẳng AB, biết AB = 3 cm.

Lời giải:

Để vẽ đường trung trực của đoạn thẳng AB, ta thực hiện theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB = 3 cm.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Bước 2. Vẽ một phần đường tròn tâm A bán kính 2 cm.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Bước 3. Vẽ một phần đường tròn tâm B bán kính 2 cm, cắt phần đường tròn tâm A vẽ ở Bước 2 tại các điểm C và D.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Bước 4. Vẽ đường thẳng đi qua hai điểm C và D. Đường thẳng CD là đường trung trực của đoạn thẳng AB.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

B. Bài tập

Giải Toán 7 trang 103 Tập 2

Bài 1 trang 103 Toán 7 Tập 2: Trong Hình 94, đường thẳng CD là đường trung trực của đoạn thẳng AB. Chứng minh CAD^=CBD^.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Lời giải:





GT

CD là đường trung trực của đoạn thẳng AB

KL

CAD^=CBD^

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Gọi M là giao điểm của CD và AB. Khi đó M là trung điểm của AB.

CD là đường trung trực của đoạn thẳng AB nên:

+) C thuộc đường trung trực của đoạn thẳng AB do đó CA = CB.

+) D thuộc đường trung trực của đoạn thẳng AB do đó DA = DB.

Xét ∆CAD và ∆CBD có:

CD là cạnh chung,

CA = AB (chứng minh trên),

DA = DB (chứng minh trên)

Do đó ∆CAD = ∆CBD (c.c.c)

Do đó CAD^=CBD^ (hai góc tương ứng)

Vậy CAD^=CBD^.

Bài 2 trang 103 Toán 7 Tập 2: Trong Hình 95, đường thẳng a là đường trung trực của cả hai đoạn thẳng AB và CD.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Chứng minh:

a) AB // CD;

b) ∆MNC = ∆MND;

c) AMD^=BMC^;

d) AD = BC, A^=B^;

e) ADC^=BCD^.

Lời giải:





GT

a là đường trung trực của đoạn thẳng AB và CD,

M là trung điểm của AB,

N là trung điểm của CD

KL

a) AB // CD;

b) ∆MNC = ∆MND;

c) AMD^=BMC^;

d) AD = BC, A^=B^;

e) ADC^=BCD^.

Chứng minh (Hình 95):

a) Vì a là đường trung trực của cả hai đoạn thẳng AB và CD (giả thiết)

Nên a ⊥ AB và a ⊥ CD.

Do đó AB // CD (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba)

Vậy AB // CD.

b) Ta có: a ⊥ CD tại N nên ∆MNC vuông tại N và ∆MND vuông tại N.

Xét ∆MNC (vuông tại N) và ∆MND (vuông tại N) có:

MN là cạnh chung

NC = ND (N là trung điểm của CD).

Do đó ∆MNC = ∆MND (hai cạnh góc vuông).

c) Vì ∆MNC = ∆MND (chứng minh câu b)

Nên MCN^=MDN^ (hai góc tương ứng). (1)

Do AM // DN nên AMD^=MDN^ (hai góc so le trong). (2)

Do BM // CN nên BMC^=MCN^ (hai góc so le trong). (3)

Từ (1), (2) và (3) suy ra AMD^=BMC^.

Vậy AMD^=BMC^.

d)Vì ∆MNC = ∆MND (chứng minh câu b)

Nên MC = MD (hai cạnh tương ứng).

Xét ∆AMD và ∆BMC có:

AM = BM (M là trung điểm của AB),

AMD^=BMC^ (chứng minh trên),

MD = MC (chứng minh trên)

Do đó ∆AMD = ∆BMC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng) và MAD^=MBC^ (hai góc tương ứng).

Vậy AD = BC và A^=B^.

e) Vì ∆AMD = ∆BMC (chứng minh câu d)

Nên ADM^=BCM^ (hai góc tương ứng).

Mà MDN^=MCN^ (chứng minh câu c)

Do đó ADM^+MDN^=BCM^+MCN^ 

Hay ADC^=BCD^.

Vậy ADC^=BCD^

Bài 3 trang 103 Toán 7 Tập 2: Cho ba điểm A, B, C thẳng hàng, điểm B nằm giữa hai điểm A và C. Gọi a và b lần lượt là đường trung trực của các đoạn thẳng AB và BC. Chứng minh rằng a // b.

Lời giải:

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

a là đường trung trực của đoạn thẳng AB nên a ⊥ AB tại trung điểm của AB.

b là đường trung trực của đoạn thẳng BC nên b ⊥ BC tại trung điểm của BC.

Do A, B, C thẳng hàng và B nằm giữa A và C nên trung điểm của đoạn thẳng AB và trung điểm của đoạn thẳng BC không trùng nhau.

Do đó đường thẳng a và đường thẳng b là hai đường thẳng phân biệt.

Ta có: a ⊥ AB, b ⊥ BC, a ≠ b

Do đó a // b.

Vậy a // b.

Bài 4 trang 103 Toán 7 Tập 2: Cho đường thẳng d là đường trung trực của đoạn thẳng AB. Điểm M không thuộc đường thẳng d và đoạn thẳng AB sao cho đường thẳng d cắt đoạn thẳng MB tại điểm I. Chứng minh:

a) MB = AI + IM;

b) MA < MB.

Lời giải:





GT

d là đường trung trực của đoạn thẳng AB,

M ∉ d, M ∉ AB, d cắt đoạn thẳng MB tại I

KL

a) MB = AI + IM;

b) MA < MB.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

a) Đường thẳng d cắt đoạn thẳng MB tại I nên I thuộc đường trung trực của đoạn thẳng AB.

Do đó AI = BI (tính chất đường trung trực của đoạn thẳng AB)

Khi đó MB = BI + IM = AI + IM.

Vậy MB = AI + IM.

b) Xét trong tam giác AIM có AI + IM > MA (bất đẳng thức trong tam giác)

Mà MB = AI + IM (chứng minh câu a) nên MB > MA.

Vậy MB > MA.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Tìm dy, biết: y = tan2 x

Next post

Cho hình trụ có chiều cao \(h = 4\) và bán kính đáy \(r = 5\). Diện tích xung quanh của hình trụ đã cho bằng

Bài liên quan:

Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ

Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ

Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ

Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc

Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ

Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1

Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học

Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ
  2. Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ
  3. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
  4. Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc
  5. Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ
  6. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1
  7. Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học
  8. Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực
  9. Giải SGK Toán 7 Bài 3 (Cánh diều): Giá trị tuyệt đối của một số thực
  10. Giải SGK Toán 7 Bài 4 (Cánh diều): Làm tròn và ước lượng
  11. Giải SGK Toán 7 Bài 5 (Cánh diều): Tỉ lệ thức
  12. Giải SGK Toán 7 Bài 6 (Cánh diều): Dãy tỉ số bằng nhau
  13. Giải SGK Toán 7 Bài 7 (Cánh diều): Đại lượng tỉ lệ thuận
  14. Giải SGK Toán 7 Bài 8 (Cánh diều): Đại lượng tỉ lệ nghịch
  15. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 2
  16. Giải SGK Toán lớp 7 Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh | Cánh diều
  17. Giải SGK Toán 7 Bài 1 (Cánh diều): Hình hộp chữ nhật. Hình lập phương
  18. Giải SGK Toán 7 Bài 2 (Cánh diều): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  19. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 3
  20. Giải SGK Toán 7 Hoạt động thực hành và trải nghiệm. Chủ đề 2: Tạo đồ dùng hình lăng trụ đứng | Cánh diều
  21. Giải SGK Toán 7 Bài 1 (Cánh diều): Góc ở vị trí đặc biệt
  22. Giải SGK Toán 7 Bài 2 (Cánh diều): Tia phân giác của một góc
  23. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai đường thẳng song song
  24. Giải SGK Toán 7 Bài 4 (Cánh diều): Định lí
  25. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 4
  26. Chương V. Một số yếu tố thống kê và xác suất
  27. Giải SGK Toán 7 Bài 1 (Cánh diều): Thu thập và phân loại dữ liệu
  28. Giải SGK Toán 7 Bài 2 (Cánh diều): Phân tích và xử lí dữ liệu 
  29. Giải SGK Toán 7 Bài 3 (Cánh diều): Biểu đồ đoạn thẳng 
  30. Giải SGK Toán 7 Bài 4 (Cánh diều): Biểu đồ hình quạt tròn 
  31. Giải SGK Toán 7 Bài 5 (Cánh diều): Biến cố trong một số trò chơi đơn giản 
  32. Giải SGK Toán 7 Bài 6 (Cánh diều): Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
  33. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 5
  34. Chương VI. Biểu thức đại số
  35. Giải SGK Toán 7 Bài 1 (Cánh diều): Biểu thức số. Biểu thức đại số
  36. Giải SGK Toán 7 Bài 2 (Cánh diều): Đa thức một biến. Nghiệm của đa thức một biến
  37. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép cộng, phép trừ đa thức một biến
  38. Giải SGK Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến
  39. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 6
  40. Chương VII. Tam giác
  41. Giải SGK Toán 7 Bài 1 (Cánh diều): Tổng các góc của một tam giác
  42. Giải SGK Toán 7 Bài 2 (Cánh diều): Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
  43. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau
  44. Giải SGK Toán 7 Bài 4 (Cánh diều): Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
  45. Giải SGK Toán 7 Bài 5 (Cánh diều): Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
  46. Giải SGK Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
  47. Giải SGK Toán 7 Bài 7 (Cánh diều): Tam giác cân
  48. Giải SGK Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên
  49. Giải SGK Toán 7 Bài 10 (Cánh diều): Tính chất ba đường trung tuyến của tam giác
  50. Giải SGK Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác
  51. Giải SGK Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác
  52. Giải SGK Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán