Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 7 – Cánh diều

Giải SGK Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác

By admin 20/04/2023 0

Giải bài tập Toán lớp 7 Bài 13: Tính chất ba đường cao của tam giác

A. Câu hỏi trong bài

Giải Toán 7 trang 116 Tập 2

Câu hỏi khởi động trang 116 Toán 7 Tập 2: Cho tam giác ABC. Gọi M, N, P lần lượt là hình chiếu của A, B, C trên các đường thẳng BC, CA, AB (Hình 132).

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Em có nhận xét gì về ba đường thẳng AM, BN, CP.

Lời giải:

Vì M, N, P lần lượt là hình chiếu của A, B, C trên các đường thẳng BC, CA, AB nên AM, BN, CP lần lượt là ba đường cao tương ứng kẻ từ ba đỉnh A, B, C.

Quan sát Hình 132, ta thấy ba đường cao AM, BN, CP cùng đi qua một điểm.

Hoạt động 1 trang 116 Toán 7 Tập 2: Cho tam giác ABC (Hình 133).

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Bằng cách sử dụng ê ke, vẽ hình chiếu M của điểm A trên đường thẳng BC.

Lời giải:

Vì M là hình chiếu của điểm A trên đường thẳng BC nên AM ⊥ BC tại M.

Do đó ta dùng hai cạnh góc vuông của thước ê ke để vẽ AM ⊥ BC tại M bằng cách đặt thước như sau:

+ Một cạnh góc vuông của ê ke trùng với cạnh BC;

+ Một cạnh góc vuông còn lại của ê ke đi qua điểm A.

Khi đó ta vẽ đường thẳng theo cạnh góc vuông đó của ê ke, đường thẳng này cắt cạnh BC tại một điểm, điểm này là điểm M cần vẽ.

Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Giải Toán 7 trang 117 Tập 2

Luyện tập 1 trang 117 Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Hãy đọc tên đường cao đi qua B, đường cao đi qua C.

Lời giải:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Tam giác ABC vuông tại A nên BA ⊥ CA tại A.

Do đó:

+ Đường cao đi qua B và vuông góc với AC là AB.

+ Đường cao đi qua C và vuông góc với AB là AC.

Hoạt động 2 trang 117 Toán 7 Tập 2: Quan sát ba đường cao AM, BN, CP của tam giác ABC (Hình 137), cho biết ba đường cao đó có cùng đi qua một điểm hay không.

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Lời giải:

Quan sát Hình 132, ta thấy ba đường cao AM, BN, CP cùng đi qua điểm H.

Luyện tập 2 trang 117 Toán 7 Tập 2: Cho tam giác đều ABC có trọng tâm là G. Chứng minh G cũng là trực tâm của tam giác ABC.

Lời giải:





GT

∆ABC đều,

G là trọng tâm của ∆ABC

KL

G là trực tâm của ∆ABC

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Gọi M, N theo thứ tự là trung điểm của AB và AC.

Vì tam giác ABC đều (giả thiết) nên AB = BC = CA.

Mà M là trung điểm của AB nên AM = BM.

Xét ∆AMC và ∆BMC có:

AC = BC (chứng minh trên),

MC là cạnh chung,

AM = BM (chứng minh trên).

Do đó ∆AMC = ∆BMC  (c.c.c).

Suy ra AMC^=BMC^ (hai góc tương ứng).

Mà AMC^+BMC^=180° nên AMC^=BMC^=180°2=90°.

Do đó CM ⊥ AB tại M.

Do đó CM là đường cao kẻ từ đỉnh C của tam giác ABC.

Chứng minh tương tự ta cũng có BN là đường cao kẻ từ đỉnh B của tam giác ABC.

Tam giác ABC có hai đường cao BN và CM cắt nhau tại G nên G là trực tâm của tam giác ABC.

Vậy G là trực tâm của tam giác ABC.

Giải Toán 7 trang 118 Tập 2

Luyện tập 3 trang 118 Toán 7 Tập 2: Cho tam giác ABC có trực tâm H cũng là trọng tâm của tam giác. Chứng minh tam giác ABC đều.

Lời giải:





GT

∆ABC,

H là trực tâm của ∆ABC,

H là trọng tâm của ∆ABC

KL

∆ABC đều.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Gọi M, N lần lượt là trung điểm của AB và AC.

Do H là trực tâm đồng thời là trọng tâm của tam giác ABC (giả thiết) nên:

+) CM ⊥ AB tại trung điểm M của AB, do đó CM là đường trung trực của AB

Nên C nằm trên đường trung trực của AB suy ra CA = CB. (1)

+) BN ⊥ AC tại trung điểm N của AC, do đó BN là đường trung trực của AC

Nên B nằm trên đường trung trực của AC suy ra BA = BC. (2)

Từ (1) và (2) suy ra AB = BC = CA nên tam giác ABC đều.

Vậy tam giác ABC đều.

B. Bài tập

Bài 1 trang 118 Toán 7 Tập 2: Cho tam giác ABC có H là trực tâm, H không trùng với đỉnh nào của tam giác. Nêu một tính chất của cặp đường thẳng:

a) AH và BC;

b) BH và CA;

c) CH và AB.

Lời giải:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

a) Vì H là trực tâm của tam giác ABC nên AH ⊥ BC.

b) Vì H là trực tâm của tam giác ABC nên BH ⊥ CA.

c) Vì H là trực tâm của tam giác ABC nên CH ⊥ AB.

Bài 2 trang 118 Toán 7 Tập 2: Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:

a) Tam giác ABC nhọn;

b) Tam giác ABC vuông tại A;

c) Tam giác ABC có góc A tù.

Lời giải:

a) Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Trong hình vẽ trên, điểm H nằm trong tam giác ABC.

b) Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Tam giác ABC vuông tại A nên BA ⊥ CA tại A.

Do đó BA và CA là hai đường cao kẻ từ đỉnh B và đỉnh C của tam giác ABC.

Mà BA cắt CA tại A nên A là trực tâm của tam giác ABC.

Do đó điểm H trùng với điểm A.

c) Ta có hình vẽ sau:

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Trong hình vẽ trên, điểm H nằm ngoài tam giác ABC.

Bài 3 trang 118 Toán 7 Tập 2: Cho tam giác nhọn ABC và điểm D nằm trong tam giác. Chứng minh rằng nếu DA vuông góc với BC và DB vuông góc với CA thì DC vuông góc với AB.

Lời giải:





GT

∆ABC nhọn, D nằm trong tam giác,

DA ⊥ BC, DB ⊥ CA.

KL

DC ⊥ AB.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Tam giác ABC có DA ⊥ BC, DB ⊥ CA (giả thiết)

Mà DA cắt DB tại D nên D là trực tâm của tam giác ABC.

Do đó DC ⊥ AB.

Vậy DC ⊥ AB.

Bài 4 trang 118 Toán 7 Tập 2: Cho tam giác nhọn ABC. Hai đường cao BE và CF cắt nhau tại H, HCA^=25°. Tính BAC^ và HBA^.

Lời giải:





GT

DABC nhọn, BE ⊥ AC, CF ⊥ AB,

BE và CF cắt nhau tại H, HCA^=25°

KL

Tính BAC^ và HBA^.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Vì CF ⊥ AB (giả thiết) nên tam giác ACF vuông tại F.

Xét ∆ACF vuông tại F: FCA^+FAC^=90° (trong tam giác vuông, hai góc nhọn phụ nhau).

Suy ra FAC^=90°−FCA^=90°−25°=65° hay BAC^=65°.

Vì BE ⊥ AC (giả thiết) nên tam giác ABE vuông tại E.

Xét ∆ABE vuông tại E: ABE^+BAE^=90° (trong tam giác vuông, hai góc nhọn phụ nhau).

Suy ra ABE^=90°−BAE^=90°−65°=25° hay HBA^=25°.

Vậy BAC^=65° và HBA^=25°.

Bài 5 trang 118 Toán 7 Tập 2: Trong Hình 139, cho biết AB // CD, AD // BC; H, K lần lượt là trực tâm các tam giác ABC và ACD. Chứng minh AK // CH và AH // CK.

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Lời giải:





GT

AB // CD, AD // BC;

H là trực tâm tam giác ABC,

K là trực tâm tam giác ACD.

KL

AK // CH và AH // CK.

Chứng minh (Hình 139):

+) Vì K là trực tâm của tam giác ACD (giả thiết) nên AK ⊥ CD.

Mà AB // CD (giả thiết) nên AK ⊥ AB.

Vì H là trực tâm của tam giác ABC (giả thiết) nên CH ⊥ AB.

Do đó AK // CH.

+) Vì K là trực tâm của tam giác ACD (giả thiết) nên CK ⊥ AD.

Mà AD // BC (giả thiết) nên CK ⊥ BC.

Vì H là trực tâm của tam giác ABC (giả thiết) nên AH ⊥ BC.

Do đó AH // CK.

Bài 6 trang 118 Toán 7 Tập 2: Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:

a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;

b) Nếu tam giác ABC có hai điểm H, I trùng nhau thì tam giác ABC là tam giác đều.

Lời giải:

a)





GT

∆ABC đều,

G là trọng tâm,

H là trực tâm,

I là giao điểm của ba đường phân giác,

O là giao điểm của ba đường trung trực.

KL

Bốn điểm G, H, I, O trùng nhau.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Kéo dài AI cắt BC tại M, kéo dài BI cắt AC tại N, kéo dài CP cắt AB tại P.

Khi đó AM là đường phân giác của BAC^ nên BAM^=CAM^;

Do tam giác ABC đều nên AB = BC = CA.

Xét ∆ABM và ∆ACM có:

AB = AC (chứng minh trên),

BAM^=CAM^ (chứng minh trên),

AM là cạnh chung

Do đó ∆ABM = ∆ACM  (c.g.c).

Suy ra:

• AMB^=AMC^ (hai góc tương ứng);

• BM = CM (hai cạnh tương ứng).

Vì BM = CM nên M là trung điểm của BC.

Ta có AMB^=AMC^, mà AMB^+AMC^=180° nên AMB^=AMC^=180°2=90°.

Khi đó AM ⊥ BC tại trung điểm M của BC nên AM là đường trung trực của đoạn thẳng BC cũng đồng thời là đường cao và đường trung tuyến kẻ từ A của ∆ABC.

Chứng minh tương tự ta cũng có:

+) BN là đường trung trực của đoạn thẳng AC, đồng thời là đường cao và đường trung tuyến kẻ từ B của ∆ABC.

+) CP là đường trung trực của đoạn thẳng AB, đồng thời là đường cao và đường trung tuyến kẻ từ C của ∆ABC.

Mà AM, BN, CP cắt nhau tại I nên G, H, I, O trùng nhau.

b)





GT

∆ABC,

H là trực tâm,

I là giao điểm của ba đường phân giác,

I ≡ H

KL

∆ABC đều

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Vì I là giao điểm ba đường phân giác, H là trực tâm của tam giác ABC (giả thiết) nên:

+ AI là đường phân giác và AH là đường cao kẻ từ A của ∆ABC.

Mà I ≡ H (giả thiết) nên đường phân giác AI trùng với đường cao AH.

+ Tương tự đường phân giác BI trùng đường cao BH;

+ Đường phân giác CI trùng đường cao CH.

Gọi M, N, P lần lượt là chân đường cao (hay cũng chính là đường phân giác) kẻ từ A, B, C đến BC, CA, AB.

Xét ∆ABM (vuông tại M) và ∆ACM (vuông tại M) có:

BAM^=CAM^ (do AM là tia phân giác của BAC^),

AM là cạnh chung

Do đó ∆ABM = ∆ACM (cạnh góc vuông – góc nhọn kề).

Suy ra AB = AC (hai cạnh tương ứng). (1)

Xét ∆ABN (vuông tại N) và ∆CBN (vuông tại N) có:

BN là cạnh chung,

ABN^=CBN^ (do BN là tia phân giác của ABC^),

Do đó ∆ABN = ∆CBN (cạnh góc vuông – góc nhọn kề).

Suy ra AB = BC (hai cạnh tương ứng). (2)

Từ (1) và (2) suy ra AB = BC = CA do đó tam giác ABC là tam giác đều.

Vậy tam giác ABC đều.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải phương trình f'(x) = 0, biết rằng: fx = 1 – sinπ + x + 2cos2π+x2

Next post

Cho hình chóp tứ giác đều có đường cao và cạnh đáy đều bằng \(a\sqrt 3 \). Thể tích của khối chóp đã cho bằng:

Bài liên quan:

Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ

Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ

Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ

Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc

Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ

Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1

Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học

Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ
  2. Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ
  3. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
  4. Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc
  5. Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ
  6. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1
  7. Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học
  8. Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực
  9. Giải SGK Toán 7 Bài 3 (Cánh diều): Giá trị tuyệt đối của một số thực
  10. Giải SGK Toán 7 Bài 4 (Cánh diều): Làm tròn và ước lượng
  11. Giải SGK Toán 7 Bài 5 (Cánh diều): Tỉ lệ thức
  12. Giải SGK Toán 7 Bài 6 (Cánh diều): Dãy tỉ số bằng nhau
  13. Giải SGK Toán 7 Bài 7 (Cánh diều): Đại lượng tỉ lệ thuận
  14. Giải SGK Toán 7 Bài 8 (Cánh diều): Đại lượng tỉ lệ nghịch
  15. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 2
  16. Giải SGK Toán lớp 7 Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh | Cánh diều
  17. Giải SGK Toán 7 Bài 1 (Cánh diều): Hình hộp chữ nhật. Hình lập phương
  18. Giải SGK Toán 7 Bài 2 (Cánh diều): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  19. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 3
  20. Giải SGK Toán 7 Hoạt động thực hành và trải nghiệm. Chủ đề 2: Tạo đồ dùng hình lăng trụ đứng | Cánh diều
  21. Giải SGK Toán 7 Bài 1 (Cánh diều): Góc ở vị trí đặc biệt
  22. Giải SGK Toán 7 Bài 2 (Cánh diều): Tia phân giác của một góc
  23. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai đường thẳng song song
  24. Giải SGK Toán 7 Bài 4 (Cánh diều): Định lí
  25. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 4
  26. Chương V. Một số yếu tố thống kê và xác suất
  27. Giải SGK Toán 7 Bài 1 (Cánh diều): Thu thập và phân loại dữ liệu
  28. Giải SGK Toán 7 Bài 2 (Cánh diều): Phân tích và xử lí dữ liệu 
  29. Giải SGK Toán 7 Bài 3 (Cánh diều): Biểu đồ đoạn thẳng 
  30. Giải SGK Toán 7 Bài 4 (Cánh diều): Biểu đồ hình quạt tròn 
  31. Giải SGK Toán 7 Bài 5 (Cánh diều): Biến cố trong một số trò chơi đơn giản 
  32. Giải SGK Toán 7 Bài 6 (Cánh diều): Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
  33. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 5
  34. Chương VI. Biểu thức đại số
  35. Giải SGK Toán 7 Bài 1 (Cánh diều): Biểu thức số. Biểu thức đại số
  36. Giải SGK Toán 7 Bài 2 (Cánh diều): Đa thức một biến. Nghiệm của đa thức một biến
  37. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép cộng, phép trừ đa thức một biến
  38. Giải SGK Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến
  39. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 6
  40. Chương VII. Tam giác
  41. Giải SGK Toán 7 Bài 1 (Cánh diều): Tổng các góc của một tam giác
  42. Giải SGK Toán 7 Bài 2 (Cánh diều): Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
  43. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau
  44. Giải SGK Toán 7 Bài 4 (Cánh diều): Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
  45. Giải SGK Toán 7 Bài 5 (Cánh diều): Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
  46. Giải SGK Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
  47. Giải SGK Toán 7 Bài 7 (Cánh diều): Tam giác cân
  48. Giải SGK Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên
  49. Giải SGK Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng
  50. Giải SGK Toán 7 Bài 10 (Cánh diều): Tính chất ba đường trung tuyến của tam giác
  51. Giải SGK Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác
  52. Giải SGK Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán