Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 7 – Cánh diều

Giải SGK Toán 7 Bài 6 (Cánh diều): Dãy tỉ số bằng nhau

By admin 19/04/2023 0

Giải bài tập Toán lớp 7 Bài 6: Dãy tỉ số bằng nhau

Giải Toán 7 trang 55 Tập 1

Câu hỏi khởi động trang 55 Toán lớp 7: Làm thế nào để biểu diễn sự bằng nhau của ba tỉ số 12;24;36?

Phương pháp giải:

Nếu a = b; b = c thì a = b = c

Lời giải:

Ta có thể biểu diễn: 12=24=36

I. Khái niệm

Hoạt động 1 trang 55 Toán lớp 7: So sánh từng cặp tỉ số trong ba tỉ số sau: 46;812;−10−15

Phương pháp giải:

Nếu a . d = b. c thì ab=cd

Lời giải:

Vì 4.12  = 6.8 nên 46=812

Vì 8.(-15) = 12. (-10) nên 812=−10−15

Vì 4.(-15) = 6.(-10) nên 46=−10−15

Luyện tập vận dụng 1 trang 55 Toán lớp 7: Viết dãy tỉ số bằng nhau từ các tỉ số:

14;832;1354;−9−36

Phương pháp giải:

Tìm các tỉ số bằng nhau trong số các tỉ số trên bằng cách rút gọn các tỉ số về dạng phân số tối giản

Lời giải:

Ta có:

832=8:832:8=14;1354;−9−36=(−9):(−9)(−36):(−9)=14

Như vậy, 14=832=−9−36

II. Tính chất

Giải Toán 7 trang 56 Tập 1

Hoạt động 2 trang 56 Toán lớp 7: a) Cho tỉ lệ thức610=915. So sánh hai tỉ số 6+910+15 và 6−910−15 với các tỉ số trong tỉ lệ thức đã cho.

b) Cho tỉ lệ thức ab=cd với b+d≠0;b−d≠0

Gọi giá trị trung của các tỉ số đó là k, tức là: k=ab=cd

– Tính a theo b và k, tính c theo d và k.

– Tính tỉ số a+cb+d và a−cb−d theo k.

– So sánh mỗi tỉ số a+cb+d và a−cb−d với các tỉ số ab và cd

Phương pháp giải:

Tính các tỉ số rồi so sánh

Lời giải:

a) Ta có:

610=6:210:2=35;915=9:315:3=35

6+910+15=1525=15:525:5=35;6−910−15=−3−5=35

Ta được: 6+910+15=6−910−15=610=915

b) – Vì k=ab⇒a=k.b

Vì k=cd⇒c=k.d

– Ta có:

a+cb+d=k.b+k.db+d=k.(b+d)b+d=k;a−cb−d=k.b−k.db−d=k.(b−d)b−d=k

– Như vậy, a+cb+d =a−cb−d = ab =cd( =k)

Giải Toán 7 trang 57 Tập 1

Luyện tập vận dụng 2 trang 57 Toán lớp 7: Tìm hai số x,y biết:

x : 1,2 = y : 0,4 và x – y = 2.

Phương pháp giải:

Sử dụng tính chất của dãy tỉ số bằng nhau: ab=cd=a−cb−d

Lời giải:

Vì x : 1,2 = y : 0,4 nên x1,2=y0,4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x1,2=y0,4=x−y1,2−0,4=20,8=2,5

Vậy x = 1,2 . 2,5 = 3; y = 0,4 . 2,5 = 1

Luyện tập vận dụng 3 trang 57 Toán lớp 7: Tìm ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 và x – y – z  = 2.

Phương pháp giải:

Sử dụng tính chất của dãy tỉ số bằng nhau: ab=cd=ef=a−c−eb−d−f

Lời giải:

Vì ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 nên x2=y3=z4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x2=y3=z4=x−y−z2−3−4=2−5=−25

Vậy x=2.−25=−45;y=3.−25=−65;z=4.−25=−85

III. Ứng dụng

Luyện tập vận dụng 4 trang 57 Toán lớp 7: Ba máy bơm cùng bơm nước vào một bể bơi không có nước, có dạng hình hộp chữ nhật, vớ các kích thước bể là 12 m; 10 m; 1,2 m. Lượng nước mà ba máy bơm được tỉ lệ với 3 số 7;8;9. Mỗi máy cần bơm bao nhiêu mét khối nước để đầy bể bơi?

Phương pháp giải:

+ Tính thể tích bể bơi hình hộp chữ nhật có kích thước a,b,c: V = a.b.c

+ Sử dụng tính chất của dãy tỉ số bằng nhau: ab=cd=ef=a+c+eb+d+f

Lời giải:

Thể tích bể bơi là:

V = 12.10.1,2 = 144 (m3)

Gọi lượng nước mà mỗi máy cần bơm lần lượt là: x,y,z (m3) (x,y,z > 0) thì tổng lượng nước 3 máy cần bơm là: x + y + z = 144

Vì lượng nước mà ba máy bơm được tỉ lệ với 3 số 7;8;9 nên x7=y8=z9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x7=y8=z9=x+y+z7+8+9=14424=6

⇒x=7.6=42;y=8.6=48;z=9.6=54(thỏa mãn)

Vậy lượng nước mà mỗi máy cần bơm lần lượt là: 42 m3; 48 m3 và 54 m3

Giải Toán 7 trang 58 Tập 1

Bài 1 trang 58 Toán lớp 7: Cho tỉ lệ thức x7=y2. Tìm hai số x,y biết:

a) x + y = 18;               b) x – y = 20

Phương pháp giải:

Sử dụng tính chất của dãy tỉ số bằng nhau:

a) ab=cd=a+cb+d

b) ab=cd=a−cb−d

Lời giải:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) x7=y2=x+y7+2=189=2

Vậy x = 7 . 2 = 14; y = 2.2 = 4

b) x7=y2=x−y7−2=205=4

Vậy x = 7.4 = 28; y = 2.4 = 8

Bài 2 trang 58 Toán lớp 7: Cho dãy tỉ số bằng nhau x3=y4=z5. Tìm ba số x,y,z biết:

a) x+y+z = 180;                      b) x + y – z = 8

Phương pháp giải:

Sử dụng tính chất của dãy tỉ số bằng nhau:

a) ab=cd=ef=a+c+eb+d+f

b) ab=cd=ef=a+c−eb+d−f

Lời giải:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) x3=y4=z5=x+y+z3+4+5=18012=15

Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75

b) x3=y4=z5=x+y−z3+4−5=82=4

Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20

Bài 3 trang 58 Toán lớp 7: Cho ba số x,y,z sao cho x3=y4;y5=z6

a) Chứng minh: x15=y20=z24

b) Tìm ba số x,y,z biết x – y + z = – 76

Phương pháp giải:

a) Nhân cả 2 vế của từng đẳng thức với cùng 1 số.

b) Sử dụng tính chất của dãy tỉ số bằng nhau:ab=cd=ef=a+c−eb+d−f

Lời giải:

a) Ta có:

x3=y4⇒x3.15=y4.15⇒x15=y20;y5=z6⇒y5.14=z6.14⇒y20=z24

Vậy  x15=y20=z24 (đpcm)

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x15=y20=z24=x−y+z15−20+24=−7619=−4

Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96

Bài 4 trang 58 Toán lớp 7: Lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng tỉ lệ với hai số 11 và 8. Tính lượng khí carbon đioxide và lượng oxygen mà 1 m2 lá cây đã thu vào và thải ra môi trường khi quang hợp trong 11 giờ ở ngoài trời nắng, biết lượng khí carbon đioxide lá cây thu vào nhiều hơn lượng oxygen lá cây thải ra môi trường là 8 g.

Phương pháp giải:

Gọi lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng lần lượt là x,y.

Biểu diễn các dữ kiện đề bài cho về dạng công thức

Áp dụng tính chất của dãy tỉ số bằng nhau

Lời giải:

Gọi lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng lần lượt là x,y (g) (x,y > 0)

Vì lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng tỉ lệ với 11 và 8 nên x11=y8

Mà khí carbon đioxide lá cây thu vào nhiều hơn lượng oxygen lá cây thải ra môi trường trong 11 giờ là 8 g nên x – y = 8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x11=y8=x−y11−8=83⇒x=11.83=883y=8.83=643

Vậy lượng khí carbon đioxide thu vào và lượng oxygen thải ra môi trường của 1 m2 lá cây khi quang hợp trong 11 giờ ở ngoài trời nắng lần lượt là 883g;643g

Bài 5 trang 58 Toán lớp 7: Một mảnh vườn có dạng hình chữ nhật với tỉ số giữa độ dài hai cạnh của nó bằng 35 và chu vi bằng 48 m.

a) Tính chiều dài, chiều rộng của mảnh vườn đó.

b) Tính diện tích của mảnh vườn đó.

Phương pháp giải:

+ Gọi độ dài 2 cạnh hình chữ nhật là x ,y

+ Biểu diễn các dữ kiện đề bài cho theo x ,y.

Chú ý: Chu vi hình chữ nhật: C = 2. (x+y)

+ Áp dụng tính chất của dãy tỉ số bằng nhau, tìm x,y

+ Tính diện tích hình chữ nhật

Lời giải:

a) Gọi chiều dài và chiều rộng của mảnh vườn hình chữ nhật lần lượt là x và y (m) (x > y > 0).

Nửa chu vi mảnh vườn là: 48 : 2 = 24 (m)

Khi đó ta có: x + y = 24 (m).

Vì tỉ số độ dài giữa hai cạnh của mảnh vườn bằng  nên  hay  (tính chất tỉ lệ thức).

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

Khi đó:

+) suy ra x = 5.3 = 15 (thoả mãn);

+)  suy ra y = 3.3 = 9 (thoả mãn).

Khi đó chiều dài mảnh vườn là 15 m; chiều rộng mảnh vườn là 9 m.

b) Diện tích mảnh vườn là: 15.9 = 135 (m2).

Vậy diện tích mảnh vườn là 135 (m2).

Bài 6 trang 58 Toán lớp 7: Trong đợt quyên góp ủng hộ các bạn vùng lũ lụt, số sách mà ba lớp 7A,7B,7C quyên góp được tỉ lệ với ba số 5;6;8. Tính số sách cả ba lớp đã quyên góp, biết số sách lớp 7C quyên góp nhiều hơn số sách của lớp 7A quyên góp là 24 quyển.

Phương pháp giải:

+ Gọi số sách 3 lớp 7A,7B,7C quyên góp được là x,y,z (quyển) (x,y,z∈N∗)

+ Biểu diễn các dữ kiện đề bài cho theo x ,y, z.

+ Áp dụng tính chất của dãy tỉ số bằng nhau, tìm x,y,z

Lời giải:

Gọi số sách 3 lớp 7A,7B,7C quyên góp được là x,y,z (quyển) (x,y,z∈N∗)

Vì số sách mà ba lớp 7A,7B,7C quyên góp được tỉ lệ với ba số 5;6;8 nên x5=y6=z8

Mà số sách lớp 7C quyên góp nhiều hơn số sách của lớp 7A quyên góp là 24 quyển nên z – x = 24

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x5=y6=z8=z−x8−5=243=8⇒x=5.8=40;y=6.8=48;z=8.8=64

Vậy số sách 3 lớp 7A,7B,7C quyên góp được lần lượt là 40 quyển; 48 quyển và 64 quyển.

Bài 7 trang 58 Toán lớp 7: Trên quần đảo Trường Sa của Việt Nam, cây phong ba, cây bàng vuông, cây mù u là những loại cây có sức sống mãnh liệt, chịu đựng được tàn phá của thiên nhiên, biển mặn và có thời gian sinh trưởng lâu. Nhân ngày Tết trồng cây, các chiến sĩ đã trồng tổng cộng 192 cây phong ba, cây bàng vuông, cây mù u trên các đảo. Số cây phong ba, cây bàng vuông, cây mù u đã trồng tỉ lệ với ba số 5;4;3. Tính số cây các chiến sĩ đã trồng mỗi loại.

Phương pháp giải:

+ Gọi số cây phong ba, cây bàng vuông, cây mù u đã trồng được là x,y,z (cây) (x,y,z∈N∗)

+ Biểu diễn các dữ kiện đề bài cho theo x ,y, z.

+ Áp dụng tính chất của dãy tỉ số bằng nhau, tìm x,y,z

Lời giải:

Gọi số cây phong ba, cây bàng vuông, cây mù u đã trồng được là x,y,z (cây) (x,y,z∈N∗)

Vì tổng số cây đã trồng được là 192 cây nên x + y + z = 192

Mà số cây phong ba, cây bàng vuông, cây mù u đã trồng tỉ lệ với ba số 5;4;3 nên x5=y4=z3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x5=y4=z3=x+y+z5+4+3=19212=16⇒x=5.16=80;y=4.16=64;z=3.16=48

Vậy số cây phong ba, cây bàng vuông, cây mù u đã trồng được lần lượt là: 80 cây, 64 cây và 48 cây.

Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:

Bài 5: Tỉ lệ thức

Bài 7: Đại lượng tỉ lệ thuận

Bài 8: Đại lượng tỉ lệ nghịch

Bài tập cuối chương 2

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Phát biểu định nghĩa cấp số cộng và công thức tính tổng n số hạng đầu tiên của một số không đổi d.

Next post

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Gọi \(N\) là trung điểm của \(B'C'\), \(P\) đối xứng với \(B\) qua \(B'\). Khi đó mặt phẳng \(\left( {PAC} \right)\) chia khối hộp thành hai phần. Tính tỉ số thể tích phần lớn và phần bé.

Bài liên quan:

Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ

Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ

Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ

Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc

Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ

Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1

Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học

Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ
  2. Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ
  3. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
  4. Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc
  5. Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ
  6. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1
  7. Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học
  8. Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực
  9. Giải SGK Toán 7 Bài 3 (Cánh diều): Giá trị tuyệt đối của một số thực
  10. Giải SGK Toán 7 Bài 4 (Cánh diều): Làm tròn và ước lượng
  11. Giải SGK Toán 7 Bài 5 (Cánh diều): Tỉ lệ thức
  12. Giải SGK Toán 7 Bài 7 (Cánh diều): Đại lượng tỉ lệ thuận
  13. Giải SGK Toán 7 Bài 8 (Cánh diều): Đại lượng tỉ lệ nghịch
  14. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 2
  15. Giải SGK Toán lớp 7 Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh | Cánh diều
  16. Giải SGK Toán 7 Bài 1 (Cánh diều): Hình hộp chữ nhật. Hình lập phương
  17. Giải SGK Toán 7 Bài 2 (Cánh diều): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  18. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 3
  19. Giải SGK Toán 7 Hoạt động thực hành và trải nghiệm. Chủ đề 2: Tạo đồ dùng hình lăng trụ đứng | Cánh diều
  20. Giải SGK Toán 7 Bài 1 (Cánh diều): Góc ở vị trí đặc biệt
  21. Giải SGK Toán 7 Bài 2 (Cánh diều): Tia phân giác của một góc
  22. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai đường thẳng song song
  23. Giải SGK Toán 7 Bài 4 (Cánh diều): Định lí
  24. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 4
  25. Chương V. Một số yếu tố thống kê và xác suất
  26. Giải SGK Toán 7 Bài 1 (Cánh diều): Thu thập và phân loại dữ liệu
  27. Giải SGK Toán 7 Bài 2 (Cánh diều): Phân tích và xử lí dữ liệu 
  28. Giải SGK Toán 7 Bài 3 (Cánh diều): Biểu đồ đoạn thẳng 
  29. Giải SGK Toán 7 Bài 4 (Cánh diều): Biểu đồ hình quạt tròn 
  30. Giải SGK Toán 7 Bài 5 (Cánh diều): Biến cố trong một số trò chơi đơn giản 
  31. Giải SGK Toán 7 Bài 6 (Cánh diều): Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
  32. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 5
  33. Chương VI. Biểu thức đại số
  34. Giải SGK Toán 7 Bài 1 (Cánh diều): Biểu thức số. Biểu thức đại số
  35. Giải SGK Toán 7 Bài 2 (Cánh diều): Đa thức một biến. Nghiệm của đa thức một biến
  36. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép cộng, phép trừ đa thức một biến
  37. Giải SGK Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến
  38. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 6
  39. Chương VII. Tam giác
  40. Giải SGK Toán 7 Bài 1 (Cánh diều): Tổng các góc của một tam giác
  41. Giải SGK Toán 7 Bài 2 (Cánh diều): Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
  42. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau
  43. Giải SGK Toán 7 Bài 4 (Cánh diều): Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
  44. Giải SGK Toán 7 Bài 5 (Cánh diều): Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
  45. Giải SGK Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
  46. Giải SGK Toán 7 Bài 7 (Cánh diều): Tam giác cân
  47. Giải SGK Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên
  48. Giải SGK Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng
  49. Giải SGK Toán 7 Bài 10 (Cánh diều): Tính chất ba đường trung tuyến của tam giác
  50. Giải SGK Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác
  51. Giải SGK Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác
  52. Giải SGK Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán