Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 7 – Cánh diều

Giải SGK Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

By admin 20/04/2023 0

Giải bài tập Toán lớp 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

A. Câu hỏi trong bài

Giải Toán 7 trang 88 Tập 2

Câu hỏi khởi động trang 88 Toán 7 Tập 2: Có ba trạm quan sát A, B, C trong đó trạm quan sát C ở giữa hồ.

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Người ta muốn đo khoảng cách từ A và từ B đến C. Do không thể đo trực tiếp được các khoảng cách trên nên người ta làm như sau (Hình 55):

– Đo góc BAC được 60°, đo góc ABC được 45°;

– Kẻ tia Ax sao cho BAx^=60°, kẻ tia By sao cho ABy^=45°, xác định giao điểm D của hai tia đó;

– Đo khoảng cách AD và BD. Ta có AC = AD và BC = BD.

Tại sao lại có hai đẳng thức trên?

Lời giải:

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Bài toán được mô tả bởi hai tam giác ABC và tam giác ABD như Hình 55.





GT

∆ABC, ∆ABD,

BAC^=DAB^=60°, 

ABC^=ABD^=45° 

KL

AC = AD và BC = BD.

Chứng minh (Hình 55):

Xét ∆ABC và ∆ABD có:

BAC^=DAB^=60° (giả thiết),

AB chung,

ABC^=ABD^=45° (giả thiết)

Suy ra ∆ABC = ∆ABD (g.c.g)

Do đó AC = AD và BC = BD (các cặp cạnh tương ứng).

Vậy AC = AD và BC = BD.

Hoạt động 1 trang 88 Toán 7 Tập 2: Cho tam giác ABC (Hình 56).

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Những góc nào của tam giác ABC có cạnh thuộc đường thẳng AB?

Trong tam giác ABC (Hình 56), ta gọi góc A và góc B là hai góc kề cạnh AB. Tương tự, góc B và góc C là hai góc kề cạnh BC, góc C và góc A là hai góc kề cạnh CA.

Lời giải:

Ta có BAC^ gồm hai cạnh lần lượt thuộc hai đường thẳng AB và AC;

ABC^ gồm hai cạnh lần lượt thuộc hai đường thẳng AB và BC.

Vậy, những góc của tam giác ABC có cạnh thuộc đường thẳng AB là: BAC^ và ABC^

Hoạt động 2 trang 88 Toán 7 Tập 2: Cho hai tam giác ABC và A’B’C’ (Hình 57) có: A^=A‘^=60°, AB = A’B’ = 3 cm, B^=B‘^=45°.

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Bằng cách đếm số ô vuông, hãy so sánh BC và B’C’. Từ đó có thể kết luận được hai tam giác ABC và A’B’C’ bằng nhau hay không?

Lời giải:

Dựa vào hình trên, bằng cách đếm số ô vuông, ta thấy:

+) Cạnh BC là đường chéo của hình vuông có độ dài cạnh bằng 4 độ dài cạnh ô vuông;

+) Cạnh B’C’ là đường chéo của hình vuông có độ dài cạnh bằng 4 độ dài cạnh ô vuông;

Do đó BC = B’C’.

Xét ∆ABC và ∆A’B’C’ có:

AB = A’B’ (= 3cm).

ABC^=A‘B‘C‘^=45°.

BC = B’C’ (chứng minh trên).

Suy ra ∆ABC = ∆A’B’C’ (c.g.c)

Vậy ∆ABC = ∆A’B’C’.

Giải Toán 7 trang 89 Tập 2

Luyện tập 1 trang 89 Toán 7 Tập 2: Cho hai tam giác ABC và A’B’C’ thỏa mãn: BC = B’C’ = 3 cm, B^=B‘^=60°, C^=50°, A‘^=70°. Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?

Lời giải:

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Xét tam giác A’B’C’ có: A‘^+B‘^+C‘^=180° (tổng ba góc trong một tam giác)

Suy ra: C‘^=180°−A‘^−B‘^=180°−70°−60°=50°.

Xét ∆ABC và ∆A’B’C’ có:

B^=B‘^=60°.

BC = B’C’ (theo giả thiết).

C^=C‘^=50°.

Suy ra ∆ABC = ∆A’B’C’ (g.c.g)

Vậy ∆ABC = ∆A’B’C’.

Luyện tập 2 trang 89 Toán 7 Tập 2: Giải thích bài toán ở phần mở đầu.

Lời giải:

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Bài toán được mô tả bởi hai tam giác ABC và tam giác ABD như Hình 55.





GT

∆ABC, ∆ABD,

BAC^=DAB^=60°, 

ABC^=ABD^=45° 

KL

AC = AD và BC = BD.

Chứng minh (Hình 55):

Xét ∆ABC và ∆ABD có:

BAC^=DAB^=60° (giả thiết),

AB chung,

ABC^=ABD^=45° (giả thiết)

Suy ra ∆ABC = ∆ABD (g.c.g)

Do đó AC = AD và BC = BD (các cặp cạnh tương ứng).

Vậy AC = AD và BC = BD.

B. Bài tập

Giải Toán 7 trang 91 Tập 2

Bài 1 trang 91 Toán 7 Tập 2: Cho hai tam giác ABC và A’B’C’ thỏa mãn: AB = A’B’, A^=A‘^, C^=C‘^. Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?

Lời giải:

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 





GT

∆ABC, ∆A’B’C’,

AB = A’B’, A^=A‘^,C^=C‘^  

KL

∆ABC và ∆A’B’C’ có bằng nhau không? Vì sao?

Xét tam giác ABC có: A^+B^+C^=180° (tổng ba góc trong một tam giác)

Suy ra: B^=180°−A^−C^.

Xét tam giác A’B’C’ có: A‘^+B‘^+C‘^=180° (tổng ba góc trong một tam giác)

Suy ra: B‘^=180°−A‘^−C‘^.

Mà A^=A‘^, C^=C‘^(giả thiết) nên ​B^=B‘^.

Xét ∆ABC và ∆A’B’C’ có:

A^=A‘^ (giả thiết),

AB = A’B’ (giả thiết),

​B^=B‘^ (giả thiết).

Suy ra ∆ABC = ∆A’B’C’ (g.c.g).

Vậy ∆ABC = ∆A’B’C’.

Bài 2 trang 91 Toán 7 Tập 2: Cho Hình 65 có AM = BN, A^=B^.

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Chứng minh: OA = OB, OM = ON.

Lời giải:





GT

∆AMO, ∆BNO,

AM = BN, A^=B^.

KL

OA = OB, OM = ON.

Chứng minh (Hình 65):

Xét ∆AMO có: AMO^+A^+AOM^=180° (tổng ba góc trong một tam giác)

Suy ra: AMO^=180°−A^−AOM^. (1)

Xét ∆BNO có: BNO^+B^+BON^=180° (tổng ba góc trong một tam giác)

Suy ra: BNO^=180°−B^−BON^. (2)

Mà A^=B^ (theo giả thiết), AOM^=BON^ (hai góc đối đỉnh) (3)

Từ (1), (2) và (3) ta có: AMO^=BNO^.

Xét ∆AMO và ∆BNO có:

A^=B^ (giả thiết).

AM = BN (giả thiết).

AMO^=BNO^ (chứng minh trên).

Suy ra ∆AMO và ∆BNO (g.c.g).

Do đó OA = OB và OM = ON (các cặp cạnh tương ứng).

Giải Toán 7 trang 92 Tập 2

Bài 3 trang 92 Toán 7 Tập 2: Cho Hình 66 có N^=P^=90°,PMQ^=NQM^. Chứng minh MN = QP, MP = QN.

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Lời giải:





GT

∆MNQ, ∆MPQ,

N^=P^=90°,PMQ^=NQM^.

KL

MN = QP, MP = QN.

Chứng minh (Hình 66):

Tam giác MNQ có N^=90° (giả thiết) nên tam giác MNQ vuông tại N.

Tam giác QPM có P^=90° (giả thiết) nên tam giác MPQ vuông tại P.

Xét ∆MNQ (vuông tại N) và ∆MPQ (vuông tại P) có:

NQM^=PMQ^ (giả thiết).

MQ chung.

Suy ra ∆MNQ  = ∆QPM  (cạnh huyền – góc nhọn).

Do đó MN = QP và MP = QN (các cặp cạnh tương ứng).

Vậy MN = QP và MP = QN.

Bài 4 trang 92 Toán 7 Tập 2: Cho Hình 67 có AHD^=BKC^=90°, DH = CK, DAB^=CBA^. Chứng minh AD = BC.

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Lời giải:





GT

∆AHD, ∆BKC,

AHD^=BKC^=90°,

DH = CK, DAB^=CBA^. 

KL

AD = BC.

Chứng minh (Hình 67):

Xét tam giác AHD có: DAB^ là góc ngoài tại đỉnh A của tam giác nên DAB^=AHD^+ADH^ (tính chất góc ngoài của tam giác)

Hay DAB^=90°+ADH^.

Xét tam giác BKC có: CBA^ là góc ngoài tại đỉnh B của tam giác nên CBA^=BKC^+BCK^ (tính chất góc ngoài của tam giác)

Hay CBA^=90°+BCK^.

Mà DAB^=CBA^ (giả thiết) nên ADH^=BCK^.

Tam giác AHD có AHD^=90°  nên là tam giác vuông tại H.

Tam giác BKC có BKC^=90°  nên là tam giác vuông tại K.

Xét ∆AHD (vuông tại H) và ∆BKC (vuông tại K) có:

DH = CK (giả thiết),

ADH^=BCK^ (chứng minh trên).

Suy ra ∆AHD = ∆BKC (cạnh góc vuông – góc nhọn kề)

Do đó AD = BC (hai cạnh tương ứng).

Vậy AD = BC.

Bài 5 trang 92 Toán 7 Tập 2: Cho tam giác ABC có B^>C^. Tia phân giác góc BAC cắt cạnh BC tại điểm D.

a) Chứng minh ADB^<ADC^.

b) Kẻ tia Dx nằm trong góc ADC sao cho ADx^=ADB^. Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh: ∆ABD = ∆AED, AB < AC.

Lời giải:





GT

∆ABC, B^>C^.

AD là tia phân giác của BAC^ 

b) Tia Dx nằm trong ADC^, ADE^=ADB^ (E là giao điểm của Dx và AC)

KL

a) ADB^<ADC^.

b) ∆ABD = ∆AED, AB < AC.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

a) Xét tam giác ABD có: ADC^ là góc ngoài tại đỉnh D của tam giác nên ADC^=BAD^+B^.

Xét tam giác ABD có: ADC^ là góc ngoài tại đỉnh D của tam giác nên ADB^=CAD^+C^.

Mà AD là tia phân giác của BAC^ (giả thiết) nên BAD^=CAD^ (tính chất tia phân giác của một góc)

Lại có B^>C^ (giả thiết) nên BAD^+B^>CAD^+C^ hay ADC^>ADB^.

Vậy ADB^<ADC^

b) Xét ∆ABD và ∆AED có:

BAD^=EAD^ (chứng minh trên),

AD chung,

ADB^=ADE^ (giả thiết).

Suy ra ∆ABD = ∆AED (g.c.g).

Vậy ∆ABD = ∆AED.

* Chứng minh AB < AC:

Cách 1:

Vì ∆ABD = ∆AED (chứng minh trên) nên AB = AE (hai cạnh tương ứng)

Mà AE < AC (do điểm E nằm trên cạnh AC)

Nên AB < AC.

Vậy AB < AC.

Cách 2: Xét tam giác ABC có B^>C^ (giả thiết)

Mà cạnh AB đối diện với góc C, cạnh AC đối diện với góc C

Do đó AC > AB.

Vậy AB < AC.

Bài 6 trang 92 Toán 7 Tập 2: Cho ∆ABC = ∆MNP. Tia phân giác của góc BAC và NMP lần lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ.

Lời giải:





GT

∆ABC = ∆MNP,

AD là tia phân giác của BAC^, 

MQ là tia phân giác của NMP^, 

KL

AD = MQ.

Chứng minh (Hình vẽ dưới đây):

 

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Vì ∆ABC = ∆MNP (giả thiết) nên:

+) BAC^=NMP^ và B^=N^ (các cặp góc tương ứng);

+) AB = MN (hai cạnh tương ứng).

Ta có:

+) AD là tia phân giác của BAC^ (giả thiết) nên BAD^=12BAC^ (tính chất tia phân giác của một góc)

+) MQ là tia phân giác của NMP^ (giả thiết) nên NMQ^=12NMP^ (tính chất tia phân giác của một góc)

Mà BAC^=NMP^ (chứng minh trên) nên BAD^=NMQ^.

Xét ∆ABD và ∆MNQ có:

BAD^=NMQ^ (chứng minh trên),

AB = MN (chứng minh trên),

B^=N^ (chứng minh trên).

Suy ra ∆ABD = ∆MNQ (g.c.g).

Do đó AD = MQ (hai cạnh tương ứng).

Vậy AD = MQ. 

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Tính y’ và đạo hàm của y’, biết: y = sin3x.

Next post

Cho mặt cầu có diện tích là \(16\pi {a^2}\). Thể tích của khối cầu đã cho bằng

Bài liên quan:

Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ

Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ

Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ

Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc

Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ

Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1

Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học

Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ
  2. Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ
  3. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
  4. Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc
  5. Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ
  6. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1
  7. Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học
  8. Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực
  9. Giải SGK Toán 7 Bài 3 (Cánh diều): Giá trị tuyệt đối của một số thực
  10. Giải SGK Toán 7 Bài 4 (Cánh diều): Làm tròn và ước lượng
  11. Giải SGK Toán 7 Bài 5 (Cánh diều): Tỉ lệ thức
  12. Giải SGK Toán 7 Bài 6 (Cánh diều): Dãy tỉ số bằng nhau
  13. Giải SGK Toán 7 Bài 7 (Cánh diều): Đại lượng tỉ lệ thuận
  14. Giải SGK Toán 7 Bài 8 (Cánh diều): Đại lượng tỉ lệ nghịch
  15. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 2
  16. Giải SGK Toán lớp 7 Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh | Cánh diều
  17. Giải SGK Toán 7 Bài 1 (Cánh diều): Hình hộp chữ nhật. Hình lập phương
  18. Giải SGK Toán 7 Bài 2 (Cánh diều): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  19. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 3
  20. Giải SGK Toán 7 Hoạt động thực hành và trải nghiệm. Chủ đề 2: Tạo đồ dùng hình lăng trụ đứng | Cánh diều
  21. Giải SGK Toán 7 Bài 1 (Cánh diều): Góc ở vị trí đặc biệt
  22. Giải SGK Toán 7 Bài 2 (Cánh diều): Tia phân giác của một góc
  23. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai đường thẳng song song
  24. Giải SGK Toán 7 Bài 4 (Cánh diều): Định lí
  25. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 4
  26. Chương V. Một số yếu tố thống kê và xác suất
  27. Giải SGK Toán 7 Bài 1 (Cánh diều): Thu thập và phân loại dữ liệu
  28. Giải SGK Toán 7 Bài 2 (Cánh diều): Phân tích và xử lí dữ liệu 
  29. Giải SGK Toán 7 Bài 3 (Cánh diều): Biểu đồ đoạn thẳng 
  30. Giải SGK Toán 7 Bài 4 (Cánh diều): Biểu đồ hình quạt tròn 
  31. Giải SGK Toán 7 Bài 5 (Cánh diều): Biến cố trong một số trò chơi đơn giản 
  32. Giải SGK Toán 7 Bài 6 (Cánh diều): Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
  33. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 5
  34. Chương VI. Biểu thức đại số
  35. Giải SGK Toán 7 Bài 1 (Cánh diều): Biểu thức số. Biểu thức đại số
  36. Giải SGK Toán 7 Bài 2 (Cánh diều): Đa thức một biến. Nghiệm của đa thức một biến
  37. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép cộng, phép trừ đa thức một biến
  38. Giải SGK Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến
  39. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 6
  40. Chương VII. Tam giác
  41. Giải SGK Toán 7 Bài 1 (Cánh diều): Tổng các góc của một tam giác
  42. Giải SGK Toán 7 Bài 2 (Cánh diều): Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
  43. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau
  44. Giải SGK Toán 7 Bài 4 (Cánh diều): Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
  45. Giải SGK Toán 7 Bài 5 (Cánh diều): Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
  46. Giải SGK Toán 7 Bài 7 (Cánh diều): Tam giác cân
  47. Giải SGK Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên
  48. Giải SGK Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng
  49. Giải SGK Toán 7 Bài 10 (Cánh diều): Tính chất ba đường trung tuyến của tam giác
  50. Giải SGK Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác
  51. Giải SGK Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác
  52. Giải SGK Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán