Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SGK Toán 7 – Cánh diều

Giải SGK Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác

By admin 20/04/2023 0

Giải bài tập Toán lớp 7 Bài 12: Tính chất ba đường trung trực của tam giác

A. Câu hỏi trong bài

Giải Toán 7 trang 112 Tập 2

Câu hỏi khởi động trang 112 Toán 7 Tập 2: Hình 121 minh họa biển giới thiệu quần thể di tích, danh thắng cấp Quốc gia núi Dũng Quyết và khu vực Phượng Hoàng Trung Đô ở tỉnh Nghệ An (Hình 120).

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Làm thế nào để xác định được vị trí cách đều ba địa điểm được minh họa trong Hình 121?

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Lời giải:

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Ba địa điểm được minh họa trên tạo thành ba đỉnh của một tam giác (Hình 121).

Khi đó vị trí cách đều ba địa điểm đó là giao điểm O của ba đường trung trực của tam giác tạo bởi ba địa điểm trên.

Hoạt động 1 trang 112 Toán 7 Tập 2: Cho tam giác ABC như Hình 122. Vẽ đường trung trực d của đoạn thẳng BC.

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Lời giải:

Đường thẳng d là trung trực của đoạn thẳng BC nên đường thẳng d vuông góc với BC tại trung điểm của BC.

Ta có hình vẽ sau:

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Giải Toán 7 trang 113 Tập 2

Luyện tập 1 trang 113 Toán 7 Tập 2: Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung trực của tam giác ABC.

Lời giải:





GT

∆ABC cân tại A,

AD là phân giác của BAC^ 

KL

AD là đường trung trực của tam giác ABC.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Tam giác ABC cân tại A (giả thiết) nên AB = AC.

Vì AD là đường phân giác của BAC^ (giả thiết) nên BAD^=CAD^ (tính chất tia phân giác)

Xét ∆ABD và ∆ACD có:

AB = AC (chứng minh trên),

BAD^=CAD^ (chứng minh trên),

AD là cạnh chung.

Do đó ∆ABD = ∆ACD (c.g.c).

Suy ra BD = CD (hai cạnh tương ứng) và ADB^=ADC^ (hai góc tương ứng).

+) Vì BD = CD mà D nằm giữa B và C nên D là trung điểm của BC. (1)

+) Vì ADB^=ADC^ và ADB^+ADC^=180° (tính chất hai góc kề bù)

Nên ADB^=ADC^=180°2=90°.

Do đó AD ⊥ BC. (2)

Từ (1) và (2) ta có AD vuông góc với BC tại trung điểm D của BC.

Vậy AD là đường trung trực của đoạn thẳng BC.

Hoạt động 2 trang 113 Toán 7 Tập 2: Quan sát các đường trung trực của tam giác ABC (Hình 126), cho biết ba đường trung trực đó có cùng đi qua một điểm hay không.

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Lời giải:

Quan sát Hình 126 ta thấy các đường trung trực của tam giác ABC cùng đi qua điểm O.

Giải Toán 7 trang 114 Tập 2

Luyện tập 2 trang 114 Toán 7 Tập 2: Trong Hình 127, điểm O có phải là giao điểm ba đường trung trực của tam giác ABC không?

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Lời giải:

Trong Hình 127 ta thấy đường thẳng qua O và cắt AB nhưng không vuông góc với AB do đó đường thẳng này không phải là đường trung trực của đoạn thẳng AB.

Tương tự đường thẳng qua O và cắt AC không vuông góc với AB nên không phải là đường trùng trực của đoạn thẳng AC.

Vậy O không phải giao điểm ba đường trung trực của tam giác ABC.

Hoạt động 3 trang 114 Toán 7 Tập 2: Quan sát giao điểm O của ba đường trung trực của tam giác ABC (Hình 128) và so sánh độ dài ba đoạn thẳng OA, OB, OC.

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Lời giải:

Vì O là giao điểm của ba đường trung trực của tam giác ABC nên:

+) O nằm trên đường trung trực của đoạn thẳng AB

Suy ra OA = OB (tính chất đường trung trực)

+) O nằm trên đường trung trực của đoạn thẳng BC

Suy ra OB = OC (tính chất đường trung trực)

Do đó OA = OB = OC.

B. Bài tập

Giải Toán 7 trang 115 Tập 2

Bài 1 trang 115 Toán 7 Tập 2: Cho tam giác ABC và điểm O thỏa mãn OA = OB = OC. Chứng minh rằng O là giao điểm ba đường trung trực của tam giác ABC.

Lời giải:





GT

∆ABC, OA = OB = OC

KL

O là giao điểm ba đường trung trực của tam giác ABC.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Vì OA = OB (giả thiết) nên O nằm trên đường trung trực của đoạn thẳng AB.

Vì OA = OC (giả thiết) nên O nằm trên đường trung trực của đoạn thẳng AC.

Tam giác ABC có O là giao điểm hai đường trung trực của đoạn thẳng AB và đoạn thẳng AC nên O là giao điểm của hai đường trung trực của tam giác ABC.

Mà ba đường trung trực của tam giác luôn cùng đi qua một điểm.

Vậy O là giao điểm ba đường trung trực của tam giác ABC

Bài 2 trang 115 Toán 7 Tập 2: Cho tam giác ABC. Vẽ điểm O cách đều ba đỉnh A, B, C trong mỗi trường hợp sau:

a) Tam giác ABC nhọn;

b) Tam giác ABC vuông tại A;

c) Tam giác ABC có góc A tù.

Lời giải:

Vì điểm O cách đều ba đỉnh A, B, C của tam giác ABC nên điểm O là giao điểm ba đường trung trực của tam giác ABC.

a) Ta có hình vẽ sau:

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

b) Ta có hình vẽ sau:

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

c) Ta có hình vẽ sau:

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Bài 3 trang 115 Toán 7 Tập 2: Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh tam giác ABC đều.

Lời giải:





GT

∆ABC,

ba đường trung tuyến cắt nhau tại G,

ba đường trung trực cắt nhau tại G

KL

Tam giác ABC đều.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Vì G là giao điểm của ba đường trung trực và ba đường trung tuyến (giả thiết)

Nên ba đường trung tuyến cũng đồng thời là đường trung trực của tam giác.

Gọi AM, BN, CP lần lượt là ba đường trung trực của tam giác ABC.

Do đó AM ⊥ BC tại trung điểm M của BC;

BN ⊥ AC tại trung điểm N của AC;

CP ⊥ AB tại trung điểm P của AB;

+) Xét tam giác ABM (vuông tại M) và tam giác ACM (vuông tại M) có:

MB = MC (M là trung điểm của BC),

AM là cạnh chung

Do đó ∆ABM = ∆ACM (hai cạnh góc vuông)

Suy ra AB = AC (hai cạnh tương ứng) (1)

+) Xét tam giác BAN (vuông tại N) và tam giác BCN (vuông tại N) có:

NA = NC (N là trung điểm của AC),

BN là cạnh chung

Do đó ∆BAN = ∆BCN (hai cạnh góc vuông)

Suy ra BA = BC (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra AB = AC = BC

Do đó tam giác ABC là tam giác đều.

Vậy tam giác ABC là tam giác đều.

Bài 4 trang 115 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm ba đường trung trực của tam giác ABC. Chứng minh tam giác ABC đều.

Lời giải:





GT

∆ABC,

ba đường phân giác cắt nhau tại I,

ba đường trung trực cắt nhau tại I

KL

Tam giác ABC đều.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

Vì I là giao điểm của ba đường trung trực và ba đường phân giác (giả thiết)

Nên ba đường phân giác cũng đồng thời là đường trung trực của tam giác.

Gọi AM, BN, CP lần lượt là ba đường trung trực của tam giác ABC.

Do đó AM ⊥ BC tại trung điểm M của BC và AM là đường phân giác của BAC^; 

BN ⊥ AC tại trung điểm N của AC và BN là đường phân giác của ABC^; 

CP ⊥ AB tại trung điểm P của AB và CP là đường phân giác của ACB^; 

+) Xét ∆ABM (vuông tại M) và DACM (vuông tại M) có:

BAM^=CAM^ (do AM là đường phân giác của BAC^),

AM là cạnh chung,

Do đó ∆ABM = ∆ACM (cạnh góc vuông – góc nhọn kề)

Suy ra AB = AC (hai cạnh tương ứng) (1)

+) Xét ∆ABN (vuông tại N) và ∆CBN (vuông tại N) có:

BAN^=CBN^ (do BN là đường phân giác của ABC^),

BN là cạnh chung,

Do đó ∆ABN = ∆CBN (cạnh góc vuông – góc nhọn kề)

Suy ra AB = CB (hai cạnh tương ứng) (1)

Từ (1) và (2) suy ra AB = BC = AC

Do đó tam giác ABC là tam giác đều.

Vậy tam giác ABC đều.

Bài 5 trang 115 Toán 7 Tập 2: Cho tam giác ABC. Đường trung trực của hai cạnh AB và AC cắt nhau tại điểm O nằm trong tam giác. M là trung điểm của BC. Chứng minh:

a) OM ⊥ BC;

b) MOB^=MOC^.

Lời giải:





GT

∆ABC, O là giao điểm hai đường trung trực của AB và AC,

O nằm trong tam giác,

M là trung điểm của BC

KL

a) OM ⊥ BC;

b) MOB^=MOC^.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

a) Do ba đường trung trực trong tam giác đồng quy tại một điểm mà tam giác ABC có O là giao điểm hai đường trung trực của đoạn thẳng AB và đoạn thẳng AC (giả thiết).

Do đó đường trung trực của đoạn thẳng BC đi qua O.

Lại có M là trung điểm của BC nên OM là đường trung trực của đoạn thẳng BC.

Do đó OM ⊥ BC.

Vậy OM ⊥ BC.

b) Do O nằm trên đường trung trực của đoạn thẳng BC nên OB = OC (tính chất đường trung trực)

Xét ∆OMB và ∆OMC có:

OM là cạnh chung,

MB = MC (M là trung điểm của BC),

OB = OC (chứng minh trên)

Do đó ∆OMB = ∆OMC (c.c.c).

Suy ra MOB^=MOC^ (hai góc tương ứng).

Vậy MOB^=MOC^

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho hàm số fx = x, xo = 4 và Δx = 0,01. Tính f’(xo) Δx

Next post

Cho hình nón \(\left( N \right)\) có bán kính đường tròn đáy bằng \(a\sqrt 3 \) và đường sinh tạo với đáy một góc \(30^\circ \). Thể tích khối nón \(\left( N \right)\) bằng:

Bài liên quan:

Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ

Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ

Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ

Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc

Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ

Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1

Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học

Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực

Leave a Comment Hủy

Mục lục

  1. Giải SGK Toán 7 Bài 1 (Cánh diều): Tập hợp Q các số hữu tỉ
  2. Giải SGK Toán 7 Bài 2 (Cánh diều): Cộng, trừ, nhân, chia số hữu tỉ
  3. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
  4. Giải SGK Toán 7 Bài 4 (Cánh diều): Thứ tự thực hiện các phép tính. Quy tắc dấu ngoặc
  5. Giải SGK Toán 7 Bài 5 (Cánh diều): Biểu diễn thập phân của một số hữu tỉ
  6. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 1
  7. Giải SGK Toán 7 Bài 1 (Cánh diều): Số vô tỉ. Căn bậc hai số học
  8. Giải SGK Toán 7 Bài 2 (Cánh diều): Tập hợp R các số thực
  9. Giải SGK Toán 7 Bài 3 (Cánh diều): Giá trị tuyệt đối của một số thực
  10. Giải SGK Toán 7 Bài 4 (Cánh diều): Làm tròn và ước lượng
  11. Giải SGK Toán 7 Bài 5 (Cánh diều): Tỉ lệ thức
  12. Giải SGK Toán 7 Bài 6 (Cánh diều): Dãy tỉ số bằng nhau
  13. Giải SGK Toán 7 Bài 7 (Cánh diều): Đại lượng tỉ lệ thuận
  14. Giải SGK Toán 7 Bài 8 (Cánh diều): Đại lượng tỉ lệ nghịch
  15. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 2
  16. Giải SGK Toán lớp 7 Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh | Cánh diều
  17. Giải SGK Toán 7 Bài 1 (Cánh diều): Hình hộp chữ nhật. Hình lập phương
  18. Giải SGK Toán 7 Bài 2 (Cánh diều): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  19. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 3
  20. Giải SGK Toán 7 Hoạt động thực hành và trải nghiệm. Chủ đề 2: Tạo đồ dùng hình lăng trụ đứng | Cánh diều
  21. Giải SGK Toán 7 Bài 1 (Cánh diều): Góc ở vị trí đặc biệt
  22. Giải SGK Toán 7 Bài 2 (Cánh diều): Tia phân giác của một góc
  23. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai đường thẳng song song
  24. Giải SGK Toán 7 Bài 4 (Cánh diều): Định lí
  25. Giải SGK Toán 7 (Cánh diều) Bài tập cuối chương 4
  26. Chương V. Một số yếu tố thống kê và xác suất
  27. Giải SGK Toán 7 Bài 1 (Cánh diều): Thu thập và phân loại dữ liệu
  28. Giải SGK Toán 7 Bài 2 (Cánh diều): Phân tích và xử lí dữ liệu 
  29. Giải SGK Toán 7 Bài 3 (Cánh diều): Biểu đồ đoạn thẳng 
  30. Giải SGK Toán 7 Bài 4 (Cánh diều): Biểu đồ hình quạt tròn 
  31. Giải SGK Toán 7 Bài 5 (Cánh diều): Biến cố trong một số trò chơi đơn giản 
  32. Giải SGK Toán 7 Bài 6 (Cánh diều): Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
  33. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 5
  34. Chương VI. Biểu thức đại số
  35. Giải SGK Toán 7 Bài 1 (Cánh diều): Biểu thức số. Biểu thức đại số
  36. Giải SGK Toán 7 Bài 2 (Cánh diều): Đa thức một biến. Nghiệm của đa thức một biến
  37. Giải SGK Toán 7 Bài 3 (Cánh diều): Phép cộng, phép trừ đa thức một biến
  38. Giải SGK Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến
  39. Giải SGK Toán 7 (Cánh diều): Bài tập cuối chương 6
  40. Chương VII. Tam giác
  41. Giải SGK Toán 7 Bài 1 (Cánh diều): Tổng các góc của một tam giác
  42. Giải SGK Toán 7 Bài 2 (Cánh diều): Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
  43. Giải SGK Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau
  44. Giải SGK Toán 7 Bài 4 (Cánh diều): Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
  45. Giải SGK Toán 7 Bài 5 (Cánh diều): Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
  46. Giải SGK Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
  47. Giải SGK Toán 7 Bài 7 (Cánh diều): Tam giác cân
  48. Giải SGK Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên
  49. Giải SGK Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng
  50. Giải SGK Toán 7 Bài 10 (Cánh diều): Tính chất ba đường trung tuyến của tam giác
  51. Giải SGK Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác
  52. Giải SGK Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán