Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Kết nối

Sách bài tập Toán 11 Bài 20 (Kết nối tri thức): Hàm số mũ và hàm số lôgarit

By admin 02/01/2024 0

Giải SBT Toán lớp 11 Bài 20: Hàm số mũ và hàm số lôgarit

Giải SBT Toán 11 trang 14

Bài 6.21 trang 14 SBT Toán 11 Tập 2: Vẽ đồ thị của các hàm số mũ sau:

a) y=3x ; b) y=14x .

Lời giải:

a) Lập bảng giá trị của hàm số tại một số điểm như sau:

Vẽ đồ thị của các hàm số mũ sau Vẽ đồ thị của các hàm số mũ sau

Từ đó, ta vẽ được đồ thị của hàm số y=3x như hình sau:

Vẽ đồ thị của các hàm số mũ sau Vẽ đồ thị của các hàm số mũ sau

b) Lập bảng giá trị của hàm số tại một số điểm như sau:

Vẽ đồ thị của các hàm số mũ sau Vẽ đồ thị của các hàm số mũ sau

Từ đó, ta vẽ được đồ thị của hàm số y=14x như hình sau:

Vẽ đồ thị của các hàm số mũ sau Vẽ đồ thị của các hàm số mũ sau

Bài 6.22 trang 14 SBT Toán 11 Tập 2: Vẽ đồ thị của các hàm số lôgarit sau:

a) y=log3x ; b) y=log23x .

Lời giải:

a) Lập bảng giá trị của hàm số tại một số điểm như sau:

Vẽ đồ thị của các hàm số lôgarit sau trang 14 SBT Toán 11 Tập 2

Từ đó, ta vẽ được đồ thị của hàm số y=log3x như hình sau:

Vẽ đồ thị của các hàm số lôgarit sau trang 14 SBT Toán 11 Tập 2

b) Lập bảng giá trị của hàm số tại một số điểm như sau:

Vẽ đồ thị của các hàm số lôgarit sau trang 14 SBT Toán 11 Tập 2

Từ đó, ta vẽ được đồ thị của hàm số y=log23x như hình sau:

Vẽ đồ thị của các hàm số lôgarit sau trang 14 SBT Toán 11 Tập 2

Bài 6.23 trang 14 SBT Toán 11 Tập 2: Cho hàm số mũ f(x) = ax (a > 0). Chứng minh rằng:

a) fx+1fx=a ;

b) f−x=1fx ;

c) fx1+x2=fx1⋅fx2 .

Lời giải:

a) Ta có fx+1fx=ax+1ax=a⋅axax=a .

b) Ta có f−x=a−x=1ax=1fx .

c) Ta có fx1+x2=ax1+x2=ax1⋅ax2=fx1⋅fx2 .

Bài 6.24 trang 14 SBT Toán 11 Tập 2: Tìm tập xác định của các hàm số sau:

a) y = log3 (x + 1); b) y=log12x−1 .

Lời giải:

a) Điều kiện: x + 1 > 0 ⇔ x > −1.

Vậy tập xác định của hàm số là (−1; +∞).

b) Điều kiện |x – 1| > 0 ⇔ x ≠ 1.

Vậy tập xác định của hàm số là ℝ\{1}.

Bài 6.25 trang 14 SBT Toán 11 Tập 2: Cho hàm số lôgarit f(x) = loga x (0 < a ≠ 1). Chứng minh rằng:

a) f1x=−fx ; b) f(xα) = αf(x).

Lời giải:

a) Ta có f1x=loga1x=logax−1=−logax=−fx .

b) f(xα) = loga xα = αloga x = αf(x).

Bài 6.26 trang 14 SBT Toán 11 Tập 2: Ta định nghĩa các hàm sin hyperbolic và hàm côsin hyperbolic như sau:

sinhx =12ex−e−x;coshx=12ex+e−x.

Chứng minh rằng:

a) sinh x là hàm số lẻ;

b) cosh x là hàm số chẵn;

c) (cosh x)2 – (sinh x)2 = 1 với mọi x.

Lời giải:

a) Hàm số fx = sinhx =12ex−e−x có tập xác định D = ℝ.

Ta có: ∀ x ∈ D ⇒ – x ∈ D.

Và f−x=12e−x−ex=−12ex−e−x=−fx , ∀ x ∈ ℝ.

Do đó, sinh x là hàm số lẻ.

b) Hàm số gx=coshx=12ex+e−x có tập xác định D = ℝ.

Ta có: ∀ x ∈ D ⇒ – x ∈ D.

Và g−x=12e−x+ex=gx , ∀ x ∈ ℝ.

Do đó, cosh x là hàm số chẵn.

c) Ta có: (cosh x)2 – (sinh x)2 =14ex+e−x2−14ex−e−x2

 =14e2x+2ex⋅e−x+e−2x−14e2x−2ex⋅e−x+e−2x

 =14e2x+12+14e−2x−14e2x+12−14e−2x=1.

Do đó, (cosh x)2 – (sinh x)2 = 1 với mọi x.

Giải SBT Toán 11 trang 15

Bài 6.27 trang 15 SBT Toán 11 Tập 2: Nếu một ô kính ngăn khoảng 3% ánh sáng truyền qua nó thì phần trăm ánh sáng p truyền qua n ô kính liên tiếp được cho gần đúng bởi hàm số sau:

p (n) = 100 × (0,97)n.

a) Có bao nhiêu phần trăm ánh sáng sẽ truyền qua 10 ô kính?

b) Có bao nhiêu phần trăm ánh sáng sẽ truyền qua 25 ô kính?

(Kết quả ở câu a và câu b được làm tròn đến hàng đơn vị).

Lời giải:

a) Phần trăm ánh sáng sẽ truyền qua 10 ô kính là: p (10) = 100.(0,97)10 ≈ 74%.

Vậy khoảng 74% ánh sáng sẽ truyền qua 10 ô kính.

b) Phần trăm ánh sáng sẽ truyền qua 25 ô kính là: p (25) = 100.(0,97)25 ≈ 47%.

Vậy khoảng 47% ánh sáng sẽ truyền qua 25 ô kính.

Bài 6.28 trang 15 SBT Toán 11 Tập 2: Số tiền ban đầu 120 triệu đồng được gửi tiết kiệm với lãi suất năm không đổi là 6%. Tính số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép:

a) hằng quý;

b) hằng tháng;

c) liên tục.

(Kết quả được tính theo đơn vị triệu đồng và làm tròn đến chữ số thập phân thứ ba).

Lời giải:

Chú ý:

– Công thức lãi kép theo định kì để tính tổng số tiền thu được A=P1+rnt , trong đó P là số tiền vốn ban đầu, r là lãi suất năm (r cho dưới dạng số thập phân), n là số kì tính lãi trong một năm và t là số kì gửi.

– Công thức tính lãi kép liên tục A = Pert, trong đó r là lãi suất năm (r cho dưới dạng số thập phân) và t là số năm gửi tiết kiệm.

a) Áp dụng công thức A=P1+rnt với P = 120, r = 6% = 0,06, n = 4, t = 20, ta được số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép hằng quý là:

A=P1+rnt=120⋅1+0,06420=120⋅1,01520≈161,623 (triệu đồng).

Vậy số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép hằng quý khoảng 161,623 triệu đồng.

b) Áp dụng công thức A=P1+rnt với P = 120, r = 6% = 0,06, n = 12, t = 60, ta được số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép hằng tháng là:

A=P1+rnt=120⋅1+0,061260=120⋅1,00560≈161,862 (triệu đồng).

Vậy số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép hằng tháng khoảng 161,862 triệu đồng.

c) Áp dụng công thức tính lãi kép liên tục A = Pert với P = 120, r = 6% = 0,06, t = 5, ta được số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép liên tục là:

A = 120 . e0,06.5 = 120 . e0,3 ≈ 161,983 (triệu đồng).

Vậy số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép liên tục khoảng 161,983 triệu đồng.

Bài 6.29 trang 15 SBT Toán 11 Tập 2: Chu kì bán rã của đồng vị phóng xạ Radi 226 là khoảng 1 600 năm. Giả sử khối lượng m (tính bằng gam) còn lại sau t năm của một lượng Radi 226 được cho bởi công thức:

m=25⋅12t1 600.

a) Khối lượng ban đầu (khi t = 0) của lượng Radi 226 đó là bao nhiêu?

b) Sau 2 500 năm khối lượng của lượng Radi 226 đó là bao nhiêu?

Lời giải:

a) Khối lượng ban đầu (khi t = 0) của lượng Radi 226 đó là: m=25⋅1201 600=25 (g).

Vậy khối lượng ban đầu (khi t = 0) của lượng Radi 226 đó là 25 gam.

b) Sau 2 500 năm (t = 2 500) khối lượng của lượng Radi 226 đó là:

m=25⋅122 5001 600≈8,46(g).

Vậy sau 2 500 năm khối lượng của lượng Radi 226 đó khoảng 8,46 gam.

Bài 6.30 trang 15 SBT Toán 11 Tập 2: Trong Vật lí, mức cường độ âm (tính bằng deciben, kí hiệu là dB) được tính bởi công thức L=10logII0 , trong đó I là cường độ âm tính theo W/m2 và I0 = 10−12 W/m2 là cường độ âm chuẩn, tức là cường độ âm thấp nhất mà tai người có thể nghe được.

a) Tính mức cường độ âm của một cuộc trò chuyện bình thường có cường độ âm là 10−7 W/m2 .

b) Khi cường độ âm tăng lên 1 000 lần thì mức cường độ âm (đại lượng đặc trưng cho độ to nhỏ của âm) thay đổi thế nào?

Lời giải:

a) Mức cường độ âm của một cuộc trò chuyện bình thường có cường độ âm 10−7 W/m2 là: L=10log10−710−12=50 (dB).

Vậy mức cường độ âm của một cuộc trò chuyện bình thường có cường độ âm 10−7 W/m2 là 50 dB.

b) Khi cường độ âm tăng lên 1 000 lần, ta có mức cường độ âm

L=10log1 000II0=10log1 000+logII0=103+logII0=30+10logII0.

Vậy mức cường độ âm tăng lên 30 dB khi cường độ âm tăng lên 1 000 lần.

Xem thêm các bài giải SBT Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit

Next post

Sách bài tập Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2
  10. Bài 8: Mẫu số liệu ghép nhóm
  11. Bài 9: Các số đặc trưng đo xu thế trung tâm
  12. Bài tập cuối chương 3
  13. Bài 10: Đường thẳng và mặt phẳng trong không gian
  14. Bài 11: Hai đường thẳng song song
  15. Bài 12: Đường thẳng và mặt phẳng song song
  16. Bài 13: Hai mặt phẳng song song
  17. Bài 14: Phép chiếu song song
  18. Bài tập cuối chương 4
  19. Sách bài tập Toán 11 Bài 18 (Kết nối tri thức): Lũy thừa với số mũ thực
  20. Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit
  21. Sách bài tập Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit
  22. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 6 trang 20
  23. Sách bài tập Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  24. Sách bài tập Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  25. Sách bài tập Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  26. Sách bài tập Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  27. Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
  28. Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích
  29. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 trang 41
  30. Sách bài tập Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  31. Sách bài tập Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất
  32. Sách bài tập Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  33. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 8 trang 51
  34. Sách bài tập Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  35. Sách bài tập Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  36. Sách bài tập Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  37. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 9 trang 63
  38. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập ôn tập cuối năm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán