Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Kết nối

Sách bài tập Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất

By admin 02/01/2024 0

Giải SBT Toán lớp 11 Bài 29: Công thức cộng xác suất

Giải SBT Toán 11 trang 48

Bài 8.6 trang 48 SBT Toán 11 Tập 2: Trong một căn phòng có 36 người, trong đó có 25 người họ Nguyễn và 11 người họ Trần. Chọn ngẫu nhiên hai người trong phòng đó. Tính xác suất để hai người được chọn có cùng họ.

Lời giải:

Xét các biến cố sau:

A: “Cả hai người được chọn đều họ Nguyễn”;

B: “Cả hai người được chọn đều họ Trần”;

C: “Cả hai người được chọn có cùng họ”.

C là biến cố hợp của A và B.

Do A và B xung khắc nên P(C) = P(A ∪ B) = P(A) + P(B).

Ta có nΩ=C362=630 ; n(A) = C252=300 ; n(B) = C112= 55.

Do đó P(A) = 300630; P(B) = 55630.

Suy ra P(C) = P(A) + P(B) = 300630+55630=355630=71126 .

Vậy xác suất để hai người được chọn có cùng họ là 71126.

Bài 8.7 trang 48 SBT Toán 11 Tập 2: Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông, 8 người không thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên một nhân viên trong công ty đó. Tính xác suất để người đó:

a) Thích chơi ít nhất một trong hai môn bóng bàn và cầu lông.

b) Thích chơi cầu lông và không thích chơi bóng bàn.

c) Thích chơi bóng bàn và không thích chơi cầu lông.

d) Thích chơi đúng một trong hai môn.

Lời giải:

Gọi A là biến cố: “Người đó thích chơi bóng bàn”;

B là biến cố: “Người đó thích chơi cầu lông”.

Khi đó:

Biến cố A ∪ B: “Người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông”.

Biến cố AB: “Người đó thích chơi cả cầu lông và bóng bàn”.

Biến cố A¯B¯ : “Người đó không thích chơi cả cầu lông và bóng bàn”.

Biến cố A¯B : “Người đó thích chơi cầu lông và không thích chơi bóng bàn”.

Biến cố AB¯ : “Người đó thích chơi bóng bàn và không thích chơi cầu lông”.

Ta có P(A) = 1940; P(B) = 2040; P(A¯B¯) = 840.

a) Ta cần tính P(A ∪ B).

Biến cố đối của biến cố A ∪ B là biến cố A¯B¯ .

Do đó P(A∪B) = 1-P(A¯B¯) = 1-840=3240=45.

Vậy xác suất để người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông là 45 .

b) Ta cần tính PA¯B.

Từ công thức cộng xác suất suy ra

P(AB) = P(A) + P(B) – P(A ∪ B) = 1940+2040−3240=740.

Có B=AB∪A¯B, suy ra P(B) = P(AB) + P(A¯B) .

Do đó P(A¯B) = P(B)-P(AB) = 2040−740=1340.

Vậy xác suất để người đó thích chơi cầu lông và không thích chơi bóng bàn là 1340 .

c) Ta cần tính P(AB¯) .

Có A = AB∪AB¯, suy ra P(A) = P(AB)+P(AB¯).

Do đó P(AB¯) = P(A)-P(AB) = 1940−740=1240=310.

Vậy xác suất để người đó thích chơi bóng bàn và không thích chơi cầu lông là 310 .

d) Gọi E là biến cố: “Người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn”.

Ta có E=AB¯∪A¯B , suy ra P(E) = PAB¯+PA¯B = 1240+1340=2540=58 .

Vậy xác suất để người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn là 58 .

Giải SBT Toán 11 trang 49

Bài 8.8 trang 49 SBT Toán 11 Tập 2: Một nhóm có 50 người được phỏng vấn họ đã mua cành đào hay cây quất vào dịp tết vừa qua, trong đó 31 người mua cành đào, 12 người mua cây quất và 5 người mua cả cành đào và cây quất. Chọn ngẫu nhiên một người. Tính xác suất để người đó:

a) Mua cành đào hoặc cây quất.

b) Mua cành đào và không mua cây quất.

c) Không mua cành đào và không mua cây quất.

d) Mua cây quất và không mua cành đào.

Lời giải:

Gọi A là biến cố: “Người đó mua cành đào”, B là biến cố: “Người đó mua cây quất”.

Biến cố A ∪ B: “Người đó mua cành đào hoặc cây quất”.

Biến cố AB: “Người đó mua cả cành đào và cây quất”.

Biến cố AB¯ : “Người đó mua cành đào và không mua cây quất”.

Biến cố A¯B¯ : “Người đó không mua cành đào và không mua cây quất”.

Biến cố A¯B : “Người đó mua cây quất và không mua cành đào”.

Ta có: P(A) = 3150 ; P(B) = 1250; P(AB) = 550.

a) Ta cần tính P(A ∪ B).

Có P(A ∪ B) = P(A) + P(B) – P(AB) = 3150+1250−550=3850=1925 .

Vậy xác suất để người đó mua cành đào hoặc cây quất là 1925 .

b) Ta cần tính P(AB¯) .

Có A = AB∪AB¯, suy ra P(A) = P(AB)+P(AB¯) .

Do đó P(AB¯) = P(A) – P(AB) = 3150−550=2650=1325 .

Vậy xác suất để người đó mua cành đào và không mua cây quất là 1325 .

c) Ta cần tính P(A¯B¯) .

Ta có biến cố đối của AB¯ là biến cố A ∪ B.

Do đó P(A¯B¯) = 1-P(A∪B) = 1-1925=625.

Vậy xác suất để người đó không mua cành đào và không mua cây quất là 625.

d) Ta cần tính P(A¯B) .

Ta có B = AB∪A¯B, suy ra P(B) = P(AB) + P(A¯B) .

Do đó P(A¯B) = P(B) – P(AB) = 1250−550=750.

Vậy xác suất để người đó mua cây quất và không mua cành đào là 750 .

Xem thêm các bài giải SBT Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải sgk Toán 11 Cánh diều | Giải bài tập Toán 11 Cánh diều Tập 1, Tập 2 (hay, chi tiết)

Next post

Giải SGK Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2
  10. Bài 8: Mẫu số liệu ghép nhóm
  11. Bài 9: Các số đặc trưng đo xu thế trung tâm
  12. Bài tập cuối chương 3
  13. Bài 10: Đường thẳng và mặt phẳng trong không gian
  14. Bài 11: Hai đường thẳng song song
  15. Bài 12: Đường thẳng và mặt phẳng song song
  16. Bài 13: Hai mặt phẳng song song
  17. Bài 14: Phép chiếu song song
  18. Bài tập cuối chương 4
  19. Sách bài tập Toán 11 Bài 18 (Kết nối tri thức): Lũy thừa với số mũ thực
  20. Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit
  21. Sách bài tập Toán 11 Bài 20 (Kết nối tri thức): Hàm số mũ và hàm số lôgarit
  22. Sách bài tập Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit
  23. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 6 trang 20
  24. Sách bài tập Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  25. Sách bài tập Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  26. Sách bài tập Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  27. Sách bài tập Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  28. Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
  29. Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích
  30. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 trang 41
  31. Sách bài tập Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  32. Sách bài tập Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  33. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 8 trang 51
  34. Sách bài tập Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  35. Sách bài tập Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  36. Sách bài tập Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  37. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 9 trang 63
  38. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập ôn tập cuối năm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán