Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Kết nối

Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 8 trang 51

By admin 02/01/2024 0

Giải SBT Toán lớp 11 Bài tập cuối chương 8 trang 51

A. TRẮC NGHIỆM

Giải SBT Toán 11 trang 51

Bài 8.16 trang 51 SBT Toán 11 Tập 2: Một vận động viên thi bắn súng. Biết rằng xác suất để vận động viên bắn trúng vòng 10 là 0,2; bắn trúng vòng 9 là 0,25 và bắn trúng vòng 8 là 0,3. Nếu bắn trúng vòng k thì được k điểm. Vận động viên đạt huy chương vàng nếu được 20 điểm, đạt huy chương bạc nếu được 19 điểm và đạt huy chương đồng nếu được 18 điểm. Vận động viên thực hiện bắn hai lần và hai lần bắn độc lập với nhau. Xác suất để vận động viên đạt huy chương bạc là

A. 0,15.

B. 0,1.

C. 0,2.

D. 0,12.

Lời giải:

Đáp án đúng là: B

Gọi A là biến cố: “Lần bắn thứ nhất được 10 điểm, lần bắn thứ hai được 9 điểm”.

B là biến cố: “Lần bắn thứ nhất được 9 điểm, lần bắn thứ hai được 10 điểm”.

C là biến cố: “Vận động viên đạt được huy chương bạc”.

Ta có C = A ∪ B.

Do hai lần bắn độc lập nên ta có P(A) = P(B) = 0,2 . 0,25 = 0,05.

Vì A và B là hai biến cố xung khắc nên

P(C) = P(A ∪ B) = P(A) + P(B) = 0,05 + 0,05 = 0,1.

Vậy xác suất để vận động viên đạt huy chương bạc là 0,1.

Giải SBT Toán 11 trang 52

Bài 8.17 trang 52 SBT Toán 11 Tập 2: Hai bạn Sơn và Tùng độc lập với nhau, mỗi người tung một con xúc xắc. Xác suất để xúc xắc của bạn Sơn xuất hiện số lẻ, xúc xắc của bạn Tùng xuất hiện số lớn hơn 4 là

A. 16 .

B. 15 .

C. 17 .

D. 211 .

Lời giải:

Đáp án đúng là: A

Gọi biến cố A: “Xúc xắc của bạn Sơn xuất hiện số lẻ”.

Biến cố B: “Xúc xắc của bạn Tùng xuất hiện số lớn hơn 4”.

Biến cố C: “Xúc xắc của bạn Sơn xuất hiện số lẻ và xúc xắc của bạn Tùng xuất hiện số lớn hơn 4”.

Ta có C = AB. Vì A, B độc lập nên P(C) = P(AB) = P(A) . P(B).

Có Ω = {1; 2; 3; 4; 5; 6}, n(Ω) = 6.

Có A = {1; 3; 5}, n(A) = 3. Do đó P(A) = 36=12.

Có B = {5; 6}, n(B) = 2. Do đó P(B) = 26=13.

Do đó P(C) = 12⋅13=16.

Vậy xác suất để xúc xắc của bạn Sơn xuất hiện số lẻ, xúc xắc của bạn Tùng xuất hiện số lớn hơn 4 là 16.

Bài 8.18 trang 52 SBT Toán 11 Tập 2: Một trường học có hai máy in A và B hoạt động độc lập. Trong 24 giờ hoạt động, xác suất để máy A và máy B gặp lỗi kĩ thuật tương ứng là 0,08 và 0,12. Xác suất để trong 24 giờ hoạt động có nhiều nhất một máy gặp lỗi kĩ thuật là

A. 0,99.

B. 0,9904.

C. 0,991.

D. 0,9906.

Lời giải:

Đáp án đúng là: B

Gọi biến cố A: “Máy A gặp lỗi kĩ thuật trong 24 giờ hoạt động”.

Biến cố B: “Máy B gặp lỗi kĩ thuật trong 24 giờ hoạt động”.

Biến cố C: “Trong 24 giờ hoạt động có nhiều nhất một máy gặp lỗi kĩ thuật”.

Biến cố C¯: “Trong 24 giờ hoạt động cả hai máy đều gặp lỗi kĩ thuật”.

Khi đó C¯ = AB mà A, B độc lập nên P(C¯) = P(AB) = P(A).P(B).

Có P(A) = 0,08; P(B) = 0,12.

Do đó P(C¯) = P(A).P(B) = 0,08.0,12 = 0,096.

Suy ra P(C) = 1-P(C¯) = 1-0,096 = 0,9904.

Vậy xác suất để trong 24 giờ hoạt động có nhiều nhất một máy gặp lỗi kĩ thuật là 0,9904.

Bài 8.19 trang 52 SBT Toán 11 Tập 2: Hai xạ thủ A và B thi bắn súng một cách độc lập với nhau. Xác suất để xạ thủ A và xạ thủ B bắn trúng bia tương ứng là 0,7 và 0,8. Xác suất để có đúng một xạ thủ bắn trúng bia là

A. 0,38.

B. 0,385.

C. 0,37.

D. 0,374.

Lời giải:

Đáp án đúng là: A

Gọi biến cố A: “Xạ thủ A bắn trúng bia”.

Biến cố B: “Xạ thủ B bắn trúng bia”.

Biến cố C: “Có đúng một xạ thủ bắn trúng bia”.

Ta có C=AB¯∪A¯B. Khi đó PC=PAB¯+PA¯B.

Vì A, B độc lập nên A, B¯ độc lập và A¯, B độc lập.

Do đó P(C) = P(A).P(B¯)+P(A¯).P(B).

Vì P(A) = 0,7 nên P(A¯) = 1-P(A) = 1-0,7 = 0,3.

Vì P(B) = 0,8 nên P(B¯) = 1-P(B) = 1-0,8 = 0,2.

Khi đó, P(C) = P(A).P(B¯)+P(A¯).P(B) = 0,7 . 0,2 + 0,3 . 0,8 = 0,38.

Vậy xác suất để có đúng một xạ thủ bắn trúng bia là 0,38.

Bài 8.20 trang 52 SBT Toán 11 Tập 2: Hai bạn An và Bình độc lập với nhau tham gia một cuộc thi. Xác suất để bạn An và bạn Bình đạt giải tương ứng là 0,8 và 0,6. Xác suất để có ít nhất một bạn được giải là

A. 0,94.

B. 0,924.

C. 0,92.

D. 0,93.

Lời giải:

Đáp án đúng là: C

Gọi biến cố A: “An đạt được giải”.

Biến cố B: “Bình đạt được giải”.

Biến cố C: “Có ít nhất một bạn được giải”.

Biến cố C¯: “Không có bạn nào đạt giải”.

Có C¯= A¯B¯ . Vì A, B độc lập nên A¯;B¯ cũng độc lập.

Suy ra P(C¯) = P(A¯B¯) = P(A¯).P(B¯).

Vì P(A) = 0,8 ⇒ P(A¯) = 1-P(A) = 1-0,8 = 0,2.

Vì P(B) = 0,6 ⇒ P(B¯) = 1-P(B) = 1-0,6 = 0,4.

Do đó P(C¯) = P(A¯).P(B¯) = 0,2 × 0,4 = 0,08. Suy ra P(C) = 0,92.

Vậy xác suất để có ít nhất một bạn được giải là 0,92.

B. TỰ LUẬN

Bài 8.21 trang 52 SBT Toán 11 Tập 2: Một nhóm 30 bệnh nhân có 24 người điều trị bệnh X, có 12 người điều trị cả bệnh X và bệnh Y, có 26 người điều trị ít nhất một trong hai bệnh X hoặc Y. Chọn ngẫu nhiên một bệnh nhân. Tính xác suất để người đó:

a) Điều trị bệnh Y.

b) Điều trị bệnh Y và không điều trị bệnh X.

c) Không điều trị cả hai bệnh X và Y.

Lời giải:

Gọi biến cố A: “Người đó điều trị bệnh X”.

Biến cố B: “Người đó điều trị bệnh Y”.

Biến cố A ∪ B: “Người đó điều trị ít nhất một trong hai bệnh X hoặc Y”.

Biến cố A¯B : “Người đó điều trị bệnh Y và không điều trị bệnh X”.

Biến cố A¯B¯ : “Người đó không điều trị cả hai bệnh X và Y”.

Ta có: P(A) = 2430; P(AB) = 1230 ; P(A∪B) = 2630.

a) Ta cần tính P(B).

Ta có P(A ∪ B) = P(A) + P(B) – P(AB) nên

P(B) = P(A ∪ B) − P(A) + P(AB) = 2630−2430+1230=1430=715 .

Vậy xác suất để người đó điều trị bệnh Y là 715 .

b) Ta cần tính P(A¯B) .

Có B = AB∪ A¯B, suy ra P(B) = P(AB) + P(A¯B)

⇒PA¯B=PB−PAB=1430−1230=230=115.

Vậy xác suất để người đó điều trị bệnh Y và không điều trị bệnh X là 115 .

c) Ta cần tính P(A¯B¯).

Ta có A¯B¯ là biến cố đối của A ∪ B.

Do đó P(A¯B¯) = 1-P(A∪B) = 1-2630=430=215 .

Vậy xác suất để người đó không điều trị cả hai bệnh X và Y là 215.

Bài 8.22 trang 52 SBT Toán 11 Tập 2: Một lớp có 40 học sinh, trong đó có 34 em thích ăn chuối, 22 em thích ăn cam và 2 em không thích ăn cả hai loại quả đó. Chọn ngẫu nhiên một học sinh trong lớp. Tính xác suất để em đó:

a) Thích ăn ít nhất một trong hai loại quả chuối hoặc cam.

b) Thích ăn cả hai loại quả chuối và cam.

Lời giải:

Gọi biến cố A: “Học sinh đó thích ăn chuối”.

Biến cố B: “Học sinh đó thích ăn cam”.

Biến cố A¯B¯ : “Học sinh đó không thích ăn chuối và ăn cam”.

Biến cố A ∪ B: “Học sinh đó thích ăn ít nhất một trong hai loại quả chuối hoặc cam”.

Biến cố AB: “Học sinh đó thích ăn cả hai loại quả chuối và cam”.

Ta có P(A) = 3440 ; P(B) = 2240; P(AB¯) = 240.

a) Ta cần tính P(A ∪ B).

Ta có A ∪ B là biến cố đối của A¯B¯.

Do đó P(A∪B) = 1-P(A¯B¯) = 1-240=3840=1920.

Vậy xác suất để học sinh đó thích ăn ít nhất một trong hai loại quả chuối hoặc cam là 1920 .

b) Ta cần tính P(AB).

Ta có P(AB) = P(A) + P(B) – P(A ∪ B) = 3440+2240−3840=1840=920 .

Vậy xác suất để học sinh đó thích ăn cả hai loại quả chuối và cam là 920 .

Bài 8.23 trang 52 SBT Toán 11 Tập 2: Một dãy phố gồm 40 gia đình, trong đó 23 gia đình có điện thoại thông minh, 18 gia đình có laptop và 26 gia đình có ít nhất một trong hai thiết bị này. Chọn ngẫu nhiên một gia đình trong dãy phố. Tính xác suất để gia đình đó:

a) Có điện thoại thông minh và laptop.

b) Có điện thoại thông minh nhưng không có laptop.

c) Không có cả điện thoại thông minh và laptop.

Lời giải:

Gọi biến cố A: “Gia đình đó có điện thoại thông minh”.

Biến cố B: “Gia đình đó có laptop”.

Biến cố AB: “Gia đình đó có điện thoại thông minh và laptop”.

Biến cố A ∪ B: “Gia đình đó có ít nhất một trong hai thiết bị”.

Biến cố AB¯ : “Gia đình đó có điện thoại thông minh nhưng không có laptop”.

Biến cố A¯B¯ : “Gia đình đó không có cả điện thoại thông minh và laptop”.

Ta có: P(A) = 2340; P(B) = 1840; P(A∪B) = 2640.

a) Ta cần tính P(AB).

Có P(AB) = P(A) + P(B) – P(A ∪ B) = 2340+1840−2640=1540=38 .

b) Ta cần tính P(AB¯) .

Ta có: A = AB∪ AB¯, do đó P(A) = P(AB∪AB¯)

⇒P(A) = P(AB)+P(AB¯)

⇒P(AB¯) = P(A) – P(AB) = 2340−1540=840=15.

Vậy xác suất để gia đình có điện thoại thông minh nhưng không có laptop là 15 .

c) Ta cần tính P(A¯B¯) .

Ta có A¯B¯ là biến cố đối của A ∪ B.

Do đó P(A¯B¯) = 1-P(A∪B) = 1-2640=1440=720.

Vậy xác suất để gia đình không có cả điện thoại thông minh và laptop là 720 .

Giải SBT Toán 11 trang 53

Bài 8.24 trang 53 SBT Toán 11 Tập 2: Một nhóm 50 học sinh đi cắm trại, trong đó có 23 em mang theo bánh ngọt, 22 em mang theo nước uống và 5 em mang theo cả bánh ngọt lẫn nước uống. Chọn ngẫu nhiên một học sinh trong nhóm. Tính xác suất để học sinh đó:

a) Mang theo hoặc bánh ngọt hoặc nước uống.

b) Không mang theo cả bánh ngọt và nước uống.

Lời giải:

Gọi biến cố A: “Học sinh đó mang theo bánh ngọt”.

Biến cố B: “Học sinh đó mang theo nước uống”.

Biến cố AB: “Học sinh đó mang theo cả bánh ngọt lẫn nước uống”.

Biến cố A ∪ B: “Học sinh đó mang theo hoặc bánh ngọt hoặc nước uống”.

Biến cố A¯B¯ : “Học sinh đó không mang theo cả bánh ngọt và nước uống”.

Ta có: P(A) = 2350 ; P(B) = 2250; P(AB) = 550.

a) Ta cần tính P(A ∪ B).

Có P(A ∪ B) = P(A) + P(B) – P(AB) =2350+2250−550=4050=45 .

Vậy xác suất để học sinh đó mang theo hoặc bánh ngọt hoặc nước uống là 45 .

b) Ta cần tính P(A¯B¯).

Ta có A¯B¯ là biến cố đối của A ∪ B. Do đó P(A¯B¯) = 1-P(A∪B) = 1-45=15 .

Vậy xác suất để học sinh đó không mang theo cả bánh ngọt và nước uống là 15 .

Bài 8.25 trang 53 SBT Toán 11 Tập 2: Một lớp 40 học sinh, trong đó có 22 em học khá môn Toán, 25 em học khá môn Ngữ văn và 3 em không học khá cả hai môn này. Chọn ngẫu nhiên một học sinh trong lớp. Tính xác suất để em đó:

a) Học khá ít nhất một trong hai môn Toán hoặc Ngữ văn.

b) Học khá cả môn Toán và môn Ngữ văn.

Lời giải:

Gọi biến cố A: “Học sinh đó học khá môn Toán”.

Biến cố B: “Học sinh đó học khá môn Ngữ văn”.

Biến cố A¯B¯ : “Học sinh đó không học khá cả hai môn Toán và Ngữ văn”.

Biến cố A ∪ B: “Học sinh đó học khá ít nhất một trong hai môn Toán hoặc Ngữ văn”.

Biến cố AB: “Học sinh đó học khá cả môn Toán và môn Ngữ văn”.

Ta có: P(A) = 2240 ; P(B) = 2540 ; P(A¯B¯) = 340.

a) Ta cần tính P(A ∪ B).

Ta có A ∪ B là biến cố đối của A¯B¯.

Do đó P(A∪B) = 1-P(A¯B¯) = 1-340=3740.

Vậy xác suất để học sinh đó học khá ít nhất một trong hai môn Toán hoặc Ngữ văn là 3740 .

b) Ta cần tính P(AB).

Có P(AB) = P(A) + P(B) – P(A ∪ B) = 2240+2540−3740=1040=14 .

Vậy xác suất để học sinh đó học khá cả môn Toán và môn Ngữ văn là 14 .

Bài 8.26 trang 53 SBT Toán 11 Tập 2: Chọn ngẫu nhiên hai người từ một nhóm 9 nhà toán học tham dự hội thảo, trong nhóm có 5 nhà toán học nam và 4 nhà toán học nữ. Tính xác suất để hai người được chọn có cùng giới tính.

Lời giải:

Xét các biến cố A: “Cả hai người được chọn là nam”;

B: “Cả hai người được chọn là nữ”;

C: “Cả hai người được chọn có cùng giới tính”.

Ta có C = A ∪ B.

Vì A và B là hai biến cố xung khắc nên P(C) = P(A ∪ B) = P(A) + P(B).

Có n(Ω) = C92 = 36; n(A) = C52 = 10; n(B) = C42 = 6.

Do đó P(A) = 1036 ; P(B) = 636 , suy ra P(C) = 1036+636=1636=49 .

Vậy xác suất để hai người được chọn có cùng giới tính là 49 .

Bài 8.27 trang 53 SBT Toán 11 Tập 2: Cho A, B là hai biến cố độc lập và xung khắc với P(A) = 0,35; P(A ∪ B) = 0,8. Tính xác suất để:

a) Xảy ra B.

b) Xảy ra cả A và B.

c) Xảy ra đúng một trong hai biến cố A hoặc B.

Lời giải:

a) Do A, B xung khắc nên P(A ∪ B) = P(A) + P(B)

⇒ P(B) = P(A ∪ B) – P(A) = 0,8 – 0,35 = 0,45.

Vậy P(B) = 0,45.

b) Do A, B độc lập nên P(AB) = P(A) × P(B) = 0,35 × 0,45 = 0,1575.

c) Vì P(A) = 0,35 nên P(A¯) = 1-P(A) = 1-0,35 = 0,65.

Vì P(B) = 0,45 nên P(B¯) = 1-P(B) = 1-0,45 = 0,55.

Do A, B độc lập nên A, B¯ cũng độc lập, suy ra

PAB¯=PA⋅PB¯= 0,35.0,55 = 0,1925.

Do A, B độc lập nên A¯ , B cũng độc lập, suy ra

PA¯B=PA¯⋅PB= 0,65.0,45 = 0,2925.

Xác suất xảy ra đúng một trong hai biến cố A hoặc B là

PAB¯∪A¯B=PAB¯+PA¯B= 0,1925 + 0,2925 = 0,485.

Vậy xác suất xảy ra đúng một trong hai biến cố A hoặc B là 0,485.

Bài 8.28 trang 53 SBT Toán 11 Tập 2: Cho hai biến cố A, B với P(A) = 14 ; P(B¯) = 15; P(A∪B) = 78. Hỏi A và B có độc lập hay không?

Lời giải:

Vì P(B¯) = 15 nên P(B) = 1-P(B¯) = 1-15 = 45.

Ta có P(AB) = P(A) + P(B) – P(A ∪ B) = 14+45−78=740 .

Khi đó, PA⋅PB=14⋅45=15=840≠740=PAB .

Vậy hai biến cố A, B không độc lập.

Xem thêm các bài giải SBT Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng

Next post

Giải SGK Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2
  10. Bài 8: Mẫu số liệu ghép nhóm
  11. Bài 9: Các số đặc trưng đo xu thế trung tâm
  12. Bài tập cuối chương 3
  13. Bài 10: Đường thẳng và mặt phẳng trong không gian
  14. Bài 11: Hai đường thẳng song song
  15. Bài 12: Đường thẳng và mặt phẳng song song
  16. Bài 13: Hai mặt phẳng song song
  17. Bài 14: Phép chiếu song song
  18. Bài tập cuối chương 4
  19. Sách bài tập Toán 11 Bài 18 (Kết nối tri thức): Lũy thừa với số mũ thực
  20. Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit
  21. Sách bài tập Toán 11 Bài 20 (Kết nối tri thức): Hàm số mũ và hàm số lôgarit
  22. Sách bài tập Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit
  23. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 6 trang 20
  24. Sách bài tập Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  25. Sách bài tập Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  26. Sách bài tập Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  27. Sách bài tập Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  28. Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
  29. Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích
  30. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 trang 41
  31. Sách bài tập Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  32. Sách bài tập Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất
  33. Sách bài tập Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  34. Sách bài tập Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  35. Sách bài tập Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  36. Sách bài tập Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  37. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 9 trang 63
  38. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập ôn tập cuối năm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán