Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Kết nối

Bài 9: Các số đặc trưng đo xu thế trung tâm

By admin 07/09/2023 0

Giải SBT Toán 11 Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài 3.5 trang 50 SBT Toán 11: Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Tính quãng đường trung bình một cầu thủ chạy trong trận đấu này.

Lời giải: 

Quãng đường trung bình cầu thủ chạy trong trận đấu là:

3,2 + 5,5 + 7,6 + 9,9 + 11,32+5+6+9+3=7,48(km)

Bài 3.6 trang 50 SBT Toán 11: Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Tìm trung vị của mẫu số liệu này và giải thích ý nghĩa của giá trị thu được.

Lời giải:

Cỡ mẫu n = 2 + 5 + 6 + 9 + 3 = 25. Nhóm chứa trung vị là [6;80). Trung vị là:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Có 50% số cầu thủ chạy nhiều hơn 7,83km và có 50% số cầu thủ chạy ít hơn 7,83km.

Bài 3.7 trang 50 SBT Toán 11: Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Tìm a sao cho có 25% số cầu thủ tham gia trận đấu chạy ít nhất a(km).

Lời giải:

Số a chính là tứ phân vị thứ ba.

Tứ phân vị thứ ba a là x18+x192. Do x18; x19 đều thuộc nhóm [8;10) nên nhóm này chứa a. Do đó, p = 4; a4 = 8; m4 = 9; m1 + m2 + m3 = 2+5+6 = 13; a5 – a4 = 2

Suy ra: a=8 +3,254–139.2=16718

Bài 3.8 trang 50 SBT Toán 11: Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Tính mốt của mẫu số liệu và giải thích ý nghĩa của giá trị thu được

Lời giải:

Nhóm chứa mốt là [8; 10). Mốt là: Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Số cầu thủ chạy khoảng 8,67km là nhiều nhất.

Bài 3.9 trang 50 SBT Toán 11: Thống kê số lần đi học muộn trong học kì của các bạn trong lớp, Nam thu được kết quả sau:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Trung bình mỗi học sinh trong lớp đi muộn bao nhiêu buổi trong học kì?

Lời giải:

Ta có bảng số liệu ghép nhóm:

Trung bình mỗi học sinh trong học kì đi muộn số buổi là:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Bài 3.10 trang 50 SBT Toán 11: Thống kê số lần đi học muộn trong học kì của các bạn trong lớp, Nam thu được kết quả sau:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Tính các tứ phân vị của mẫu số liệu ghép nhóm và cho biết ý nghĩa của các kết quả thu được.

Lời giải:

Ta có bảng số liệu ghép nhóm:

Sách bài tập Toán 11 Bài 9 (Kết nối tri thức): Các số đặc trưng đo xu thế trung tâm  (ảnh 1)

Cỡ mẫu n=40

+ Tứ phân vị thứ nhất Q1 là x10+x112. Do x10,x11 đều thuộc nhóm [0;3) nên nhóm này chứa Q1. Do đó, p=1,a1=0,m1=23,a2−a1=3

Suy ra: Q1=0+404−023.3=3023

+ Tứ phân vị thứ ba Q3 là x30+x312. Do x30,x31 đều thuộc nhóm [3;6) nên nhóm này chứa Q3. Do đó, p=2,a2=3,m2=8,m1=233,a3−a2=3

Suy ra: Q3=3+3.404−238.3=5,625.

+ Tứ phân vị Q2 chính là trung vị Me

Nhóm chứa trung vị là [0;3). Trung vị là: Me=0+402−023(3−0)=6023

Vậy Q2=6023.

Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Ôn tập Chương 4

Next post

Bài 1: Hệ điều hành

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2
  10. Bài 8: Mẫu số liệu ghép nhóm
  11. Bài tập cuối chương 3
  12. Bài 10: Đường thẳng và mặt phẳng trong không gian
  13. Bài 11: Hai đường thẳng song song
  14. Bài 12: Đường thẳng và mặt phẳng song song
  15. Bài 13: Hai mặt phẳng song song
  16. Bài 14: Phép chiếu song song
  17. Bài tập cuối chương 4
  18. Sách bài tập Toán 11 Bài 18 (Kết nối tri thức): Lũy thừa với số mũ thực
  19. Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit
  20. Sách bài tập Toán 11 Bài 20 (Kết nối tri thức): Hàm số mũ và hàm số lôgarit
  21. Sách bài tập Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit
  22. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 6 trang 20
  23. Sách bài tập Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  24. Sách bài tập Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  25. Sách bài tập Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  26. Sách bài tập Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  27. Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
  28. Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích
  29. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 trang 41
  30. Sách bài tập Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  31. Sách bài tập Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất
  32. Sách bài tập Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  33. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 8 trang 51
  34. Sách bài tập Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  35. Sách bài tập Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  36. Sách bài tập Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  37. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 9 trang 63
  38. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập ôn tập cuối năm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán