Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Kết nối

Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích

By admin 02/01/2024 0

Giải SBT Toán lớp 11 Bài 27: Thể tích

Giải SBT Toán 11 trang 41

Bài 7.33 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC); AB = a, AC = a2 và SBA^=60°, BAC^=45°. Tính theo a thể tích khối chóp S.ABC.

Lời giải:

Cho hình chóp S.ABC có SA vuông góc (ABC)

Xét tam giác SAB vuông tại A, có SA = AB . tan60° = a3.

Có SABC=12⋅AB⋅AC⋅sinBAC^=12⋅a⋅a2⋅sin45°=a22.

Vậy VS.ABC=13⋅SABC⋅SA=a336.

Bài 7.34 trang 41 SBT Toán 11 Tập 2: Cho khối chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Tính theo a thể tích khối chóp S.ABCD.

Lời giải:

Cho khối chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD.

Vì S.ABCD là hình chóp đều nên SO ⊥ (ABCD).

Kẻ OM ⊥ CD tại M. Vì SO ⊥ (ABCD) nên SO ⊥ CD mà OM ⊥ CD nên CD ⊥ (SOM), suy ra SM ⊥ CD. Do đó góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng OM và SM, mà (OM,SM) = SMO^. Do đó SMO^ = 60o.

Xét tam giác BCD có OM // BC (vì cùng vuông góc với CD) mà O là trung điểm của BD nên M là trung điểm của CD. Do đó OM là đường trung bình của tam giác BCD nên OM = BC2=a2.

Xét tam giác SOM vuông tại O có SO = OM.tanSMO^ = a2.tan60o = a32.

Vậy VS.ABCD=13⋅SABCD⋅SO=13⋅a2⋅a32=a336.

Bài 7.35 trang 41 SBT Toán 11 Tập 2: Cho hình lăng trụ ABC.A’B’C’ có A’B’C’ và AA’C’ là hai tam giác đều cạnh a. Biết (ACC’A’) ⊥ (A’B’C’). Tính theo a thể tích khối lăng trụ ABC.A’B’C’.

Lời giải:

Cho hình lăng trụ ABC.A'B'C' có A'B'C' và AA'C' là hai tam giác đều cạnh a

Kẻ AH ⊥ A’C’ tại H mà (ACC’A’) ⊥ (A’B’C’) và (ACC’A’) ∩ (A’B’C’) = A’C’ nên

AH ⊥ (A’B’C’).

Tam giác A’B’C’ là tam giác đều cạnh a nên SA‘B‘C‘=a234.

Tam giác AA’C’ là tam giác đều cạnh a, AH là đường cao nên AH = a32.

Vậy VABC.A‘B‘C‘=SA‘B‘C‘⋅AH=a234⋅a32=3a38.

Bài 7.36 trang 41 SBT Toán 11 Tập 2: Cho tứ diện OABC có OA = OB = OC = a và AOB^=90°; BOC^=60°; COA^=120°. Tính theo a thể tích khối tứ diện OABC.

Lời giải:

Cho tứ diện OABC có OA = OB = OC = a và góc AOB = 90 độ

Xét tam giác OAB vuông tại O, có AB = OA2+OB2=a2+a2=a2.

Xét tam giác BOC có OB = OC và BOC^=60° nên tam giác BOC là tam giác đều.

Do đó BC = a.

Áp dụng định lí Côsin trong tam giác OAC có:

AC2=OA2+OC2-2.OA.OC.cosAOC^

= a2+a2+2.a2.12 = 3a2 ⇒AC2=3a2⇒AC=a3

Có AB2+BC2=2a2+a2=3a2. Do đó AC2 = AB2 + BC2.

Vì AC2 = AB2 + BC2 nên tam giác ABC vuông tại B.

Do đó SABC=AB⋅BC2=a2⋅a2=a222.

Kẻ OH ⊥ (ABC) tại H.

Vì OA = OB = OC nên HA = HB = HC.

Khi đó, H là trung điểm của AC nên AH = a32.

Xét tam giác OAH vuông tại H, có OH = OA2−AH2=a2−3a24=a2.

Vậy VOABC=13⋅SABC⋅OH=13⋅a222⋅a2=a3212.

Bài 7.37 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, biết SO ⊥ (ABCD), AC = 2a3, BD = 2a và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a32. Tính theo a thể tích khối chóp S.ABCD.

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, biết SO vuông góc (ABCD)

Kẻ OM ⊥ BC tại M mà BC ⊥ SO (do SO ⊥ (ABCD)) nên BC ⊥ (SOM).

Kẻ OH ⊥ SM tại H mà OH ⊥ BC (do BC ⊥ (SOM)) nên OH ⊥ (SBC).

Suy ra d(O, (SBC)) = OH.

Do ABCD là hình thoi tâm O nên O là trung điểm của AC, do đó

d(A, (SBC)) = 2 . d(O, (SBC)) = 2 . OH = a32.

Suy ra OH = a34.

Vì ABCD là hình thoi tâm O nên O là trung điểm của AC, BD nên OB = BD2 = a;

OC = AC2 = a3.

Do ABCD là hình thoi nên AC ⊥ BD.

Xét tam giác OBC vuông tại O, OM là đường cao: ta có 1OM2=1OB2+1OC2

=1a2+13a2=43a2⇒OM=a32.

Vì SO ⊥ (ABCD) nên SO ⊥ OM.

Xét tam giác SOM vuông tại O, OH là đường cao, ta có 1OH2=1SO2+1OM2

⇔163a2=1SO2+43a2⇔1SO2=163a2−43a2=4a2⇒SO=a2.

Vậy VS.ABCD=13⋅SABCD⋅SO=13⋅12.AC.BD.SO = 13⋅12⋅2a3⋅2a⋅a2=a333.

Bài 7.38 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), SA = a và đáy ABC là tam giác vuông tại A, AB = a, AC = a3. Kẻ AM vuông góc với SB tại M, AN vuông góc với SC tại N. Tính theo a thể tích khối chóp S.AMN.

Lời giải:

Hướng dẫn. Ta chứng minh được công thức tỉ số khoảng cách sau:

Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A’, B’, C’ khác với S.

Cho hình chóp S.ABC có SA vuông góc (ABC), SA = a

Khi đó ta có: VS.A‘B‘C‘VS.ABC=SA‘SA⋅SB‘SB⋅SC‘SC.

Áp dụng công thức trên với bài tập 7.38, ta có VS.AMNVS.ABC=SASA⋅SMSB⋅SNSC=SMSB⋅SNSC.

Trình bày lời giải

Cho hình chóp S.ABC có SA vuông góc (ABC), SA = a

Ta có VS.ABC=13⋅SABC⋅SA=13⋅12⋅AB⋅AC⋅SA=13⋅12⋅a3⋅a⋅a=a336.

Vì SA ⊥ (ABC) nên SA ⊥ AB hay tam giác SAB vuông tại A mà SA = AB = a nên tam giác SAB vuông cân tại A.

Vì tam giác SAB vuông cân tại A, AM là đường cao nên AM đồng thời là trung tuyến, suy ra M là trung điểm SB. Do đó SMSB=12.

Vì SA ⊥ (ABC) nên SA ⊥ AC hay tam giác SAC vuông tại A

Vì tam giác SAC vuông tại A nên SC=SA2+AC2=a2+3a2=2a.

Xét tam giác SAC vuông tại A, đường cao AN có SNSC=SN⋅SCSC2=SA2SC2=14.

Do đó VS.AMNVS.ABC=SMSB⋅SNSC=18⇒VS.AMN=18⋅VS.ABC⇒VS.AMN=18⋅a336=a3348.

Vậy VS.AMN=a3348 .

Bài 7.39 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC) và BAC^=60°, biết diện tích các tam giác ABC, SAB và SAC lần lượt là 33; 9; 12. Tính thể tích khối chóp S.ABC.

Lời giải:

Cho hình chóp S.ABC có SA vuông góc (ABC) và góc BAC = 60 độ

Đặt SA = a, AB = b, AC = c.

Khi đó VS.ABC=13⋅SABC⋅SA=13⋅12⋅bc⋅sin60°⋅a=abc312.

Theo đề bài, SABC=12⋅bc⋅sin60°=33⇒bc=12 .

Do SA ⊥ (ABC) nên SA ⊥ AB hay tam giác SAB vuông tại A.

Khi đó SSAB=ab2=9⇒ab=18.

Do SA ⊥ (ABC) nên SA ⊥ AC hay tam giác SAC vuông tại A.

Khi đó SSAC=ac2=12⇒ac=24.

Do đó (abc)2 = 12 × 18 × 24 = 722, suy ra abc = 72.

Vậy VS.ABC=72312=63 .

Bài 7.40 trang 41 SBT Toán 11 Tập 2: Người ta cắt bỏ bốn hình vuông cùng kích thước ở bốn góc của một tấm tôn hình vuông có cạnh 1 m để gò lại thành một chiếc thùng có dạng hình hộp chữ nhật không nắp. Hỏi cạnh của các hình vuông cần bỏ đi có độ dài bằng bao nhiêu để thùng hình hộp nhận được có thể tích lớn nhất.

Lời giải:

Người ta cắt bỏ bốn hình vuông cùng kích thước

Gọi x (m) là độ dài cạnh hình vuông nhỏ tại mỗi góc của tấm tôn được cắt bỏ đi (với 0<x<12). Thể tích hình hộp chữ nhật nhận được là:

V = (1-2x)2.x = 14.(1-2x).(1-2x).4x≤14.1−2x+1−2x+4x33 = 227 .

Dấu “=” xảy ra khi 1 – 2x = 4x ⇔ x = 16.

Vậy để thể tích chiếc thùng là lớn nhất thì các cạnh của hình vuông được cắt bỏ đi là 16 m.

Xem thêm các bài giải SBT Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách

Next post

Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2
  10. Bài 8: Mẫu số liệu ghép nhóm
  11. Bài 9: Các số đặc trưng đo xu thế trung tâm
  12. Bài tập cuối chương 3
  13. Bài 10: Đường thẳng và mặt phẳng trong không gian
  14. Bài 11: Hai đường thẳng song song
  15. Bài 12: Đường thẳng và mặt phẳng song song
  16. Bài 13: Hai mặt phẳng song song
  17. Bài 14: Phép chiếu song song
  18. Bài tập cuối chương 4
  19. Sách bài tập Toán 11 Bài 18 (Kết nối tri thức): Lũy thừa với số mũ thực
  20. Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit
  21. Sách bài tập Toán 11 Bài 20 (Kết nối tri thức): Hàm số mũ và hàm số lôgarit
  22. Sách bài tập Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit
  23. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 6 trang 20
  24. Sách bài tập Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  25. Sách bài tập Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  26. Sách bài tập Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  27. Sách bài tập Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  28. Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
  29. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 trang 41
  30. Sách bài tập Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  31. Sách bài tập Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất
  32. Sách bài tập Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  33. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 8 trang 51
  34. Sách bài tập Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  35. Sách bài tập Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  36. Sách bài tập Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  37. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 9 trang 63
  38. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập ôn tập cuối năm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán