Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Kết nối

Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách

By admin 02/01/2024 0

Giải SBT Toán lớp 11 Bài 26: Khoảng cách

Giải SBT Toán 11 trang 37

Bài 7.27 trang 37 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Tính theo a khoảng cách:

a) Giữa hai đường thẳng AB và C’D’.

b) Giữa đường thẳng AC và mặt phẳng (A’B’C’D’).

c) Từ điểm A đến đường thẳng B’D’.

d) Giữa hai đường thẳng AC và B’D’.

Lời giải:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a

a) Do ABCD.A’B’C’D’ là hình lập phương nên các mặt là hình vuông.

Vì ABCD là hình vuông nên AB ⊥ BC mà AB ⊥ BB’ (do BB’ ⊥ (ABCD)), từ đó suy ra AB ⊥ (BCC’B’), suy ra BC’ ⊥ AB.

Vì A’B’C’D’ là hình vuông nên C’D’ ⊥ B’C’ mà CC’ ⊥ C’D’ (do CC’ ⊥ (A’B’C’D’)) nên C’D’ ⊥ (BCC’B’), suy ra BC’ ⊥ C’D’.

Xét tam giác BB’C’ vuông tại B’, có BC’ = BB‘2+B‘C‘2=a2+a2=a2.

Vì BC’ ⊥ AB và BC’ ⊥ C’D’ nên d(AB, C’D’) = BC’ = a2.

b) Ta có AA’ // CC’ và AA’ = CC’ (do AA’; CC’ cùng song song và bằng BB’).

Do đó ACC’A’ là hình bình hành, suy ra AC // A’C’. Do đó AC // (A’B’C’D’).

Vì AC // (A’B’C’D’) nên d(AC, (A’B’C’D’)) = d(A, (A’B’C’D’)) = AA’ = a.

c) Gọi O’ là giao điểm của A’C’ và B’D’.

Vì AA’ ⊥ (A’B’C’D’) nên AA’ ⊥ B’D’.

Vì A’B’C’D’ là hình vuông nên A’C’ ⊥ B’D’ mà AA’ ⊥ B’D’ nên B’D’ ⊥ (AA’C’C), suy ra AO’ ⊥ B’D’.

Xét tam giác A’B’C’ vuông tại B’, có: A’C’ = A‘B‘2+B‘C‘2=a2+a2=a2.

Do A’B’C’D’ là hình vuông và O’ là giao điểm của A’C’ và B’D’ nên O’ là trung điểm của A’C’. Do đó A’O’ = A‘C‘2=a22.

Xét tam giác AA’O’ vuông tại A’, có AO’ = AA‘2+A‘O‘2=a2+2a24=a62.

Vì AO’ ⊥ B’D’ nên d(A, B’D’) = AO’ = a62 .

d) Vì AC // A’C’ nên AC // ((A’B’C’D’)) mà B’D’ ⊂ (A’B’C’D’).

Do đó d(AC, B’D’) = d(AC, (A’B’C’D’)) = d(A, (A’B’C’D’)) = AA’ = a.

Giải SBT Toán 11 trang 38

Bài 7.28 trang 38 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh bằng a, SA ⊥ (ABC) và SA = 2a. Tính theo a khoảng cách:

a) Từ điểm B đến mặt phẳng (SAC).

b) Từ điểm A đến mặt phẳng (SBC).

c) Giữa hai đường thẳng AB và SC.

Lời giải:

Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh bằng a

a) Kẻ BH ⊥ AC tại H.

Vì SA ⊥ (ABC) nên SA ⊥ BH mà BH ⊥ AC. Suy ra, BH ⊥ (SAC).

Vì ABC là tam giác đều cạnh a có BH là đường cao nên BH = a32.

Do đó d(B, (SAC)) = BH = a32.

b) Kẻ AM ⊥ BC tại M, AK ⊥ SM tại K

Do SA ⊥ (ABC) nên SA ⊥ BC mà AM ⊥ BC nên BC ⊥ (SAM), suy ra BC ⊥ AK.

Vì AK ⊥ SM và BC ⊥ AK thì AK ⊥ (SBC).

Suy ra d(A, (SBC)) = AK.

Tam giác ABC đều cạnh bằng a có AM là đường cao nên AM = a32.

Vì SA ⊥ (ABC) nên SA ⊥ AM.

Xét tam giác SAM vuông tại A, có 1AK2=1SA2+1AM2=14a2+43a2=1912a2 ⇒AK = 2a319. Vậy d(A, (SBC)) = 2a319.

c) Dựng hình bình hành ABCD thì AB // CD nên AB // (SCD) và mặt phẳng (SCD) chứa SC nên d(AB, SC) = d(AB, (SCD)). Mà d(AB, (SCD)) = d(A, (SCD)).

Kẻ AN ⊥ DC tại N, kẻ AQ ⊥ SN tại Q

Vì ADC là tam giác đều, AN là đường cao nên AN = a32.

Vì SA ⊥ (ABC) nên SA ⊥ (ABCD), suy ra SA ⊥ DC mà AN ⊥ DC nên DC ⊥ (SAN).

Vì DC ⊥ (SAN) nên DC ⊥ AQ mà AQ ⊥ SN nên AQ ⊥ (SDC).

Khi đó d(A, (SCD)) = AQ.

Xét tam giác SAN vuông tại A, có 1AQ2=1SA2+1AN2=14a2+43a2=1912a2
⇒AQ=2a319. Vậy d(AB, SC) = 2a319 .

Bài 7.29 trang 38 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 60°, biết tam giác SBC đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a khoảng cách:

a) Từ điểm S đến mặt phẳng (ABC).

b) Từ điểm B đến mặt phẳng (SAC).

c) Giữa hai đường thẳng AB và SC.

Lời giải:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 60 độ

a) Kẻ SH ⊥ BC tại H. Do (SBC) ⊥ (ABC) và (SBC) ∩ (ABC) = BC nên SH ⊥ (ABC). Suy ra d(S, (ABC)) = SH.

Vì tam giác SBC là tam giác đều cạnh a, SH là đường cao nên SH = a32.

Vậy d(S, (ABC)) = a32.

b) Do tam giác SBC đều và SH ⊥ BC nên SH đồng thời là trung tuyến hay H là trung điểm của BC.

Kẻ HK ⊥ CA tại K mà SH ⊥ AC (do SH ⊥ (ABC)). Suy ra AC ⊥ (SHK).

Kẻ HQ ⊥ SK tại Q mà AC ⊥ HQ (do AC ⊥ (SHK)). Do đó HQ ⊥ (SAC).

Khi đó d(H, (SAC)) = HQ.

Xét tam giác vuông ABC vuông tại A, có AB = BC . cos 60° = a2.

Xét tam giác ABC vuông tại A, có HK // AB (vì cùng vuông góc với AC) mà H là trung điểm của BC nên K là trung điểm của AC. Do đó HK là đường trung bình của tam giác ABC. Suy ra HK = AB2=a4.

Xét tam giác SHK vuông tại H, có 1HQ2=1SH2+1HK2=43a2+16a2=523a2.

⇒HQ=39a26.

Lại có H là trung điểm của BC nên d(B, (SAC)) = 2 . d(H, (SAC)) = 2HQ = 39a13.

c) Dựng hình bình hành ABMC mà A^=90° nên ABMC là hình chữ nhật.

Do ABMC là hình chữ nhật nên AB // MC.

Khi đó AB // (SCM) và mặt phẳng (SCM) chứa SC nên

d(AB, SC) = d(AB, (SCM)) = d(B, (SCM)) = 2d(H, (SCM)).

Kẻ HN ⊥ CM tại N.

Vì SH ⊥ (ABC) nên SH ⊥ (ABMC), suy ra SH ⊥ MC.

Vì SH ⊥ MC và HN ⊥ CM nên CM ⊥ (SHN).

Kẻ HE ⊥ SN tại E.

Vì CM ⊥ (SHN) nên CM ⊥ HE mà HE ⊥ SN nên HE ⊥ (SCM).

Suy ra d(H, (SCM)) = HE.

Xét tam giác vuông ABC vuông tại A, có AC = BC . sin 60° = a32.

Xét tam giác BCM có HN là đường trung bình nên HN = BM2=AC2=a34.

Xét tam giác SHN vuông tại H, có 1HE2=1SH2+1HN2=43a2+163a2=203a2

⇒HE=15a10.

Vậy d(AB, SC) = 2HE =15a5.

Bài 7.30 trang 38 SBT Toán 11 Tập 2: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, AD = a2, AA’ = a3. Tính theo a khoảng cách:

a) Từ điểm A đến mặt phẳng (BDD’B’).

b) Giữa hai đường thẳng BD và CD’.

Lời giải:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = acăn2

a) Kẻ AH ⊥ BD tại H.

Do D’D ⊥ (ABCD) nên D’D ⊥ AH mà AH ⊥ BD, suy ra AH ⊥ (BDD’B’).

Suy ra d(A, (BDD’B’)) = AH.

Xét tam giác ADB vuông tại A, có 1AH2=1AD2+1AB2=12a2+1a2=32a2

⇒AH=a63. Vậy d(A, (BDD’B’)) = a63.

b) Có BC // A’D’ và BC = A’D’ (do BC, A’D’ cùng song song và bằng AD).

Do đó BCD’A’ là hình bình hành, suy ra CD’ // BA’, suy ra CD’ // (A’BD).

Ta có CD’ // (A’BD) nên d(BD, CD’) = d(CD’, (A’BD)) = d(C, (A’BD)).

Do ABCD là hình chữ nhật nên AC và BD cắt nhau tại trung điểm của AC nên

d(C, (A’BD)) = d(A, (A’BD)).

Kẻ AK ⊥ A’H tại K.

Vì AA’ ⊥ (ABCD) nên A’A ⊥ BD mà AH ⊥ BD nên BD ⊥ (A’AH), suy ra BD ⊥ AK.

Vì BD ⊥ AK và AK ⊥ A’H nên AK ⊥ (A’BD). Suy ra d(A, (A’BD)) = AK.

Vì AA’ ⊥ (ABCD) nên AA’ ⊥ AH.

Xét tam giác A’AH vuông tại A, có 1AK2=1AA‘2+1AH2=13a2+96a2=116a2

⇒AK=a6611. Vậy d(BD, CD’) = a6611.

Bài 7.31 trang 38 SBT Toán 11 Tập 2: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A và AB = AC = AA’ = a. Tính theo a khoảng cách:

a) Từ điểm A đến đường thẳng B’C’.

b) Giữa hai đường thẳng BC và AB’.

Lời giải:

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A

a) Hạ AH ⊥ B’C’ tại H. Khi đó d(A, B’C’) = AH.

Vì ABC.A’B’C’ là lăng trụ đứng nên các mặt bên là hình chữ nhật, do đó AA’ = BB’ = CC’ = a, AB = A’B’ = a; AC = A’C’ = a, BC = B’C’.

Xét tam giác ABB’ vuông tại B, có AB’ = AB2+BB‘2=a2+a2=a2.

Xét tam giác ACA’ vuông tại A, có A’C = AA‘2+AC2=a2+a2=a2.

Suy ra AC’ = a2.

Xét tam giác ABC vuông tại A, có BC = AB2+AC2=a2+a2=a2.

Suy ra B’C’ = a2.

Do đó AB’ = AC’ = B’C’ = a2. Suy ra tam giác AB’C’ đều.

Xét tam giác AB’C’ đều có AH là đường cao nên AH = AB‘32=a2⋅32=a62.

Vậy d(A, B’C’) = a62.

b) Do BCC’B’ là hình chữ nhật nên BC // B’C’.

Suy ra BC // (AB’C’) nên d(BC, AB’) = d(BC, (AB’C’)) = d(C, (AB’C’)).

Do ACC’A’ là hình chữ nhật nên CA’ cắt AC’ tại trung điểm của CA’ do đó

d(C, (AB’C’)) = d(A’, (AB’C’)).

Đặt d(A’, (AB’C’)) = h. Áp dụng kết quả bài 7.7 trang 28 SBT Toán 11 tập 2, ta có:

1h2=1A‘A2+1A‘B‘2+1A‘C‘2=1a2+1a2+1a2=3a2⇒h=a33.

Vậy d(BC, AB’) = a33.

Bài 7.32 trang 38 SBT Toán 11 Tập 2: Trên một mái nhà nghiêng 30° so với mặt phẳng nằm ngang, người ta dựng một chiếc cột vuông góc với mái nhà. Hỏi chiếc cột tạo với mặt phẳng nằm ngang một góc bao nhiêu độ? Vì sao?

Lời giải:

Trên một mái nhà nghiêng 30 độ so với mặt phẳng nằm ngang

Gọi AB là giao tuyến của mặt phẳng mái nhà và mặt phẳng nằm ngang, AD là đường thẳng nằm trên mái nhà và vuông góc với AB, đường thẳng DE là chiếc cột vuông góc với mái nhà, đường thẳng AE nằm trên mặt phẳng nằm ngang. Khi đó tam giác ADE vuông tại D, đường thẳng AE là hình chiếu vuông góc của DE trên mặt phẳng nằm ngang. Khi đó góc giữa đường thẳng DE (chiếc cột) và mặt phẳng nằm ngang bằng góc giữa hai đường thẳng DE và AE, mà (DE, AE) = DEA^.

Xét tam giác ADE vuông tại D có DEA^ = 30o mà DAE^+DEA^=90°

⇔30°+DEA^=90°⇒DEA^=60°

Vậy góc giữa đường thẳng DE (chiếc cột) và mặt phẳng nằm ngang bằng 60°.

Xem thêm các bài giải SBT Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc

Next post

Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích

Bài liên quan:

Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác

Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác

Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số

Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng

Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  4. Sách bài tập Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  7. Sách bài tập Toán 11 Bài 6 (Kết nối tri thức): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 7 (Kết nối tri thức): Cấp số nhân
  9. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 2
  10. Bài 8: Mẫu số liệu ghép nhóm
  11. Bài 9: Các số đặc trưng đo xu thế trung tâm
  12. Bài tập cuối chương 3
  13. Bài 10: Đường thẳng và mặt phẳng trong không gian
  14. Bài 11: Hai đường thẳng song song
  15. Bài 12: Đường thẳng và mặt phẳng song song
  16. Bài 13: Hai mặt phẳng song song
  17. Bài 14: Phép chiếu song song
  18. Bài tập cuối chương 4
  19. Sách bài tập Toán 11 Bài 18 (Kết nối tri thức): Lũy thừa với số mũ thực
  20. Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit
  21. Sách bài tập Toán 11 Bài 20 (Kết nối tri thức): Hàm số mũ và hàm số lôgarit
  22. Sách bài tập Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit
  23. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 6 trang 20
  24. Sách bài tập Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
  25. Sách bài tập Toán 11 Bài 23 (Kết nối tri thức): Đường thẳng vuông góc với mặt phẳng
  26. Sách bài tập Toán 11 Bài 24 (Kết nối tri thức): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  27. Sách bài tập Toán 11 Bài 25 (Kết nối tri thức): Hai mặt phẳng vuông góc
  28. Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích
  29. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 trang 41
  30. Sách bài tập Toán 11 Bài 28 (Kết nối tri thức): Biến cố hợp, biến cố giao, biến cố độc lập
  31. Sách bài tập Toán 11 Bài 29 (Kết nối tri thức): Công thức cộng xác suất
  32. Sách bài tập Toán 11 Bài 30 (Kết nối tri thức): Công thức nhân xác suất cho hai biến cố độc lập
  33. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 8 trang 51
  34. Sách bài tập Toán 11 Bài 31 (Kết nối tri thức): Định nghĩa và ý nghĩa của đạo hàm
  35. Sách bài tập Toán 11 Bài 32 (Kết nối tri thức): Các quy tắc tính đạo hàm
  36. Sách bài tập Toán 11 Bài 33 (Kết nối tri thức): Đạo hàm cấp hai
  37. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 9 trang 63
  38. Sách bài tập Toán 11 (Kết nối tri thức) Bài tập ôn tập cuối năm

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán