Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Cánh diều

Sách bài tập Toán 11 Bài 2 (Cánh diều): Hai đường thẳng song song trong không gian

By admin 09/10/2023 0

Giải SBT Toán 11 Bài 2: Hai đường thẳng song song trong không gian

Bài 10 trang 99 SBT Toán 11: Hai đường thẳng chéo nhau khi và chỉ khi:

A. Hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.

B. Hai đường thẳng không có điểm chung.

C. Hai đường thẳng không cùng nằm trong một mặt phẳng nào.

D. Hai đường thẳng cùng chéo nhau với đường thẳng thứ ba.

Lời giải:

Đáp án đúng là: C

Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng hay hai đường thẳng đó không cùng nằm trong một mặt phẳng nào.

Bài 11 trang 99, 100 SBT Toán 11: Cho ba đường thẳng a, b, c. Trong các mệnh đề sau, mệnh đề nào đúng?

A. Nếu a và b cùng song song với c thì a song song với b.

B. Nếu a và b cùng chéo nhau với c thì a và b chéo nhau.

C. Nếu a song song với b, b và c chéo nhau thì a và c chéo nhau hoặc cắt nhau.

D. Nếu a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau.

Lời giải:

Đáp án đúng là: C

Xét từng đáp án:

+ Đáp án A: Vì a, b, c không phân biệt nên a và b có thể trùng nhau, do đó đáp án A sai.

+ Đáp án B: Ví dụ hình chóp S.ABCD có BC và CD cùng chéo nhau với SA nhưng chúng cắt nhau. Do đó đáp án B sai.

Cho ba đường thẳng a, b, c. Trong các mệnh đề sau, mệnh đề nào đúng?  A. Nếu a và b cùng song song với c thì a song song với b. B. Nếu a và b cùng chéo nhau với c thì a và b chéo nhau.  C. Nếu a song song với b, b và c chéo nhau thì a và c chéo nhau hoặc cắt nhau.   D. Nếu a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau.   (ảnh 1)

+ Đáp án D: Ví dụ hình chóp S.ABCD có AB cắt SA, SA cắt SD nhưng AB và SD chéo nhau. Do đó đáp án D sai.

+ Đáp án C: Nếu a song song với b, b và c chéo nhau thì a và c chéo nhau hoặc cắt nhau. Đây là khẳng định đúng.

Thật vậy, giả sử a và c song song hoặc trùng với nhau, do a // b nên b và c song song hoặc trùng nhau (vô lí, trái với giả thiết b và c chéo nhau).

Vậy các đáp án A, B, D sai và đáp án C đúng.

Bài 12 trang 100 SBT Toán 11: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SC. Trong các đường thẳng sau, đường thẳng nào song song với MN?

A. AB.

B. AD.

C. BD.

D. AC.

Lời giải:

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SC. Trong các đường thẳng sau, đường thẳng nào song song với MN?  A. AB.  B. AD. C. BD. D. AC. (ảnh 1)

Vì M, N lần lượt là trung điểm của SA, SC nên MN là đường trung bình của tam giác SAC. Do đó MN // AC.

Bài 13 trang 100 SBT Toán 11: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD. Giao tuyến của hai mặt phẳng (CMN) và (BCD) là đường thẳng song song với đường thẳng nào sau đây?

A. BD.

B. CD.

C. BC.

D. AB.

Lời giải:

Đáp án đúng là: A

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD. Giao tuyến của hai mặt phẳng (CMN) và (BCD) là đường thẳng song song với đường thẳng nào sau đây?  A. BD.  B. CD. C. BC. D. AB. (ảnh 1)

Vì M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác ABD. Do đó, MN // BD.

Hai mặt phẳng (CMN) và (BCD) có C là điểm chung và lần lượt chứa hai đường thẳng MN và BD song song với nhau nên giao tuyến của chúng là đường thẳng đi qua C, song song với MN và BD.

Bài 14 trang 100 SBT Toán 11: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với NP?

A. MQ.

B. BD.

C. AD.

D. BC.

Lời giải:

Đáp án đúng là: B

Vì M, Q lần lượt là trung điểm của SA, SD nên MQ là đường trung bình của tam giác SAD, do đó MQ // AD. (1)

Vì N, P lần lượt là trung điểm của SB, SC nên NP là đường trung bình của tam giác SBC, do đó NP // BC. (2)

Mà ABCD là hình bình hành nên AD // BC. (3)

Từ (1), (2), (3) suy ra MN, NP, AD và BC đôi một song song.

Vậy trong các đáp án đã cho, đường thẳng BD không song song với NP.

Bài 15 trang 100 SBT Toán 11: Quan sát hình căn phòng (Hình 16), hãy cho biết vị trí tương đối của các cặp đường thẳng a và b; a và c; b và c.

Quan sát hình căn phòng (Hình 16), hãy cho biết vị trí tương đối của các cặp đường thẳng a và b; a và c; b và c.    (ảnh 1)

Lời giải:

Quan sát hình căn phòng (Hình 16), ta thấy:

+ a và b song song với nhau;

+ a và c chéo nhau;

+ b và c cắt nhau.

Bài 16 trang 100 SBT Toán 11: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD và P là một điểm nằm trên CD. Đường thẳng BC cắt mặt phẳng (MNP) tại Q. Chứng minh rằng PQ // BD.

Lời giải:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD và P là một điểm nằm trên CD. Đường thẳng BC cắt mặt phẳng (MNP) tại Q. Chứng minh rằng PQ // BD.  (ảnh 1)

Ta có: BD = (ABD) ∩ (BCD).

Lại có M ∈ AB ⊂ (ABD), N ∈ AD ⊂ (ABD) nên MN ⊂ (ABD).

Mà MN ⊂ (MNP) nên MN = (ABD) ∩ (MNP).

Vì BC cắt mặt phẳng (MNP) tại Q nên PQ là giao tuyến của (MNP) và (BCD).

Khi đó, ba mặt phẳng (ABD), (BCD), (MNP) đôi một cắt nhau theo các giao tuyến BD, PQ, MN.

Mà trong tam giác ABD, vì MN là đường trung bình nên MN // BD.

Vậy theo định lí về giao tuyến của ba mặt phẳng, ta có PQ // BD.

Bài 17 trang 100 SBT Toán 11: Cho hình chóp tứ giác S.ABCD. Gọi G, K lần lượt là trọng tâm của các tam giác SAB và SAD; M, N lần lượt là trung điểm của BC và CD. Chứng minh rằng GK // MN.

Lời giải:

Cho hình chóp tứ giác S.ABCD. Gọi G, K lần lượt là trọng tâm của các tam giác SAB và SAD; M, N lần lượt là trung điểm của BC và CD. Chứng minh rằng GK // MN.   (ảnh 1)

Gọi P, Q lần lượt là trung điểm của AB và AD.

Vì G là trọng tâm của tam giác SAB nên SGSP=23.

Vì K là trọng tâm của tam giác SAD nên SKSQ=23.

Khi đó, ta có SGSP=SKSQ, suy ra GK // PQ. (1)

Vì PQ là đường trung bình của tam giác ABD nên PQ // BD;

MN là đường trung bình của tam giác BCD nên MN // BD.

Suy ra MN // PQ. (2)

Từ (1) và (2) suy ra GK // MN.

Bài 18 trang 100 SBT Toán 11: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K, L lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SAD.

a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.

b) Chứng minh rằng JL // CD.

c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SCD).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K, L lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SAD.  a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành. b) Chứng minh rằng JL // CD.  c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SCD). (ảnh 1)

a) Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.

Do MN là đường trung bình của tam giác ABC nên MN // AC và MN = 12AC.

Tương tự ta có QP là đường trung bình của tam giác ACD nên QP // AC và QP = 12AC.

Suy ra MN // QP và MN = QP. (1)

Lại có I, J lần lượt là trọng tâm của các tam giác SAB, SBC nên SJSN=SLSQ=23.

Suy ra IJ // MN và IJMN=23. (2)

Tương tự, ta có LK // QP và LKQP=23. (3)

Từ (1), (2) và (3) suy ra IJ // LK và IJ = LK.

Vậy bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.

b) Vì J, L lần lượt là trọng tâm của các tam giác SBC, SAD nên SISM=SJSN=23.

Suy ra JL // NQ.

Trong hình bình hành ABCD ta có NQ // CD (do N và Q lần lượt là trung điểm của BC và AD).

Do đó, JL // CD.

c) Hai mặt phẳng (IJKL) và (SCD) có điểm chung là K và lần lượt chứa hai đường thẳng JL và CD song song với nhau nên giao tuyến của hai mặt phẳng (IJKL) và (SCD) là đường thẳng d đi qua K và song song với CD.

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Bài giảng điện tử Hai đường thẳng song song trong không gian | Cánh diều Giáo án PPT Toán 11

Next post

Bố cục tác phẩm Ngữ Văn 11 Chân trời sáng tạo (chuẩn nhất)

Bài liên quan:

Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác

Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số

Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng

Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị
  4. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số
  7. Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân
  9. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 2
  10. Sách bài tập Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số
  11. Sách bài tập Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
  12. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số liên tục
  13. Sách bài tập Toán 11 Bài tập cuối chương 3 (Cánh diều)
  14. Bài giảng điện tử Giá trị lượng giác của góc lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  15. Bài giảng điện tử Toán 11 Kết nối tri thức (cả năm) mới nhất 2023 | Giáo án PPT Toán 11
  16. 20 Bài tập Góc lượng giác. Giá trị lượng giác của góc lượng giác (sách mới) có đáp án – Toán 11
  17. Giải sgk tất cả các môn lớp 11 Kết nối tri thức | Giải sgk các môn lớp 11 chương trình mới
  18. Giải SBT Toán 11 Kết nối tri thức | Sách bài tập Toán 11 Kết nối tri thức (hay, chi tiết)
  19. Giải sgk Toán 11 (cả 3 bộ sách) | Giải bài tập Toán 11 (hay, chi tiết)
  20. Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  21. Tổng hợp Lý thuyết Toán lớp 11 Kết nối tri thức | Kiến thức trọng tâm Toán lớp 11 Kết nối tri thức hay, chi tiết
  22. Giáo án Toán 11 Bài 1 (Kết nối tri thức 2023): Giá trị lượng giác của góc lượng giác
  23. Giáo án Toán 11 Kết nối tri thức năm 2023 (mới nhất)
  24. Giải SGK Toán 11 Bài 1 (Kết nối tri thức): Giá trị lượng giác của góc lượng giác
  25. Giải sgk Toán 11 Kết nối tri thức | Giải bài tập Toán 11 Kết nối tri thức Tập 1, Tập 2 (hay, chi tiết)
  26. Bài giảng điện tử Công thức lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  27. 20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11
  28. Lý thuyết Công thức lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  29. Giáo án Toán 11 Bài 2 (Kết nối tri thức 2023): Công thức lượng giác
  30. Giải SGK Toán 11 Bài 2 (Kết nối tri thức): Công thức lượng giác
  31. Bài giảng điện tử Hàm số lượng giác | Kết nối tri thức Giáo án PPT Toán 11
  32. 20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11
  33. Lý thuyết Hàm số lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  34. Giáo án Toán 11 Bài 3 (Kết nối tri thức 2023): Hàm số lượng giác
  35. Giải SGK Toán 11 Bài 3 (Kết nối tri thức): Hàm số lượng giác
  36. Bài giảng điện tử Phương trình lượng giác cơ bản | Kết nối tri thức Giáo án PPT Toán 11
  37. 20 Bài tập Phương trình lượng giác cơ bản (sách mới) có đáp án – Toán 11
  38. Lý thuyết Phương trình lượng giác cơ bản (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  39. Giáo án Toán 11 Bài 4 (Kết nối tri thức 2023): Phương trình lượng giác cơ bản
  40. Giải SGK Toán 11 Bài 4 (Kết nối tri thức): Phương trình lượng giác cơ bản
  41. Bài giảng điện tử Bài tập cuối chương 1 trang 40 | Kết nối tri thức Giáo án PPT Toán 11
  42. Sách bài tập Toán 11 (Kết nối tri thức): Bài tập cuối chương 1 trang 25
  43. Lý thuyết Toán 11 Chương 1 (Kết nối tri thức 2023): Hàm số lượng giác và phương trình lượng giác hay, chi tiết
  44. Giáo án Toán 11 (Kết nối tri thức 2023) Bài tập cuối chương 1
  45. Giải SGK Toán 11 (Kết nối tri thức) Bài tập cuối chương 1 trang 40
  46. Bài giảng điện tử Dãy số | Kết nối tri thức Giáo án PPT Toán 11
  47. 20 Bài tập Dãy số (sách mới) có đáp án – Toán 11
  48. Giáo án Toán 11 Bài 5 (Kết nối tri thức 2023): Dãy số
  49. Lý thuyết Dãy số (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11
  50. Giải SGK Toán 11 Bài 5 (Kết nối tri thức): Dãy số
  51. Bài giảng điện tử Cấp số cộng | Kết nối tri thức Giáo án PPT Toán 11
  52. 20 Bài tập Cấp số cộng (sách mới) có đáp án – Toán 11

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán