Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 - Cánh Diều

Lý thuyết Xác suất của biến cố (Cánh diều 2023) hay, chi tiết

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 5: Xác suất của biến cố sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.
Lý thuyết Toán lớp 10 Bài 5: Xác suất của biến cố
A. Lý thuyết
I. Một số khái niệm về xác suất
1. Phép thử ngẫu nhiên và không gian mẫu
Có những phép thử mà ta không thể đoán được kết quả của nó, mặc dù đã biết tập hợp các kết quả có thể của phép thử đó. Những phép thử như thế gọi là phép thử ngẫu nhiên (gọi tắt là phép thử).

Tập hợp Ω các kết quả có thể xảy ra của một phép thử gọi là không gian mẫu của phép thử đó.
Ví dụ: Viết không gian mẫu của phép thử tung một đồng xu ba lần.
Hướng dẫn giải
Khi tung một đồng xu thì có hai kết quả có thể là đồng xu xuất hiện mặt sấp (S) hoặc đồng xu xuất hiện mặt ngửa (N).
Khi đó, tung ba đồng xu thì có các kết quả có thể là: SSS; SSN; SNN; SNS; NSS; NSN; NNS; NNN.
Suy ra không gian mẫu của phép thử là Ω = {SSS; SSN; SNN; SNS; NSS; NSN; NNS; NNN}.
Vậy không gian mẫu của phép thử tung đồng xu ba lần là: Ω = {SSS; SSN; SNN; SNS; NSS; NSN; NNS; NNN}.
2. Biến cố
a) Định nghĩa
Nhận xét:

– Mỗi sự kiện liên quan đến phép thử T tương ứng với một (và chỉ một) tập con A của không gian mẫu Ω.
– Ngược lại, mỗi tập con A của không gian mẫu Ω có thể phát biểu dưới dạng mệnh đề nêu sự kiện liên quan đến phép thử T.
Định nghĩa:
Biến cố ngẫu nhiên (gọi tắt là biến cố) là một tập con của không gian mẫu.
Chú ý: Vì sự kiện chỉ ra tính chất đặc trưng cho các phần tử của một biến cố nên ta cũng gọi sự kiện là biến cố. Chẳng hạn “Kết quả của hai lần tung là giống nhau” trong phép thử “Tung một đồng xu hai lần liên tiếp” là một biến cố.
Ví dụ: Với phép thử tung đồng xu ba lần liên tiếp. Biến cố A: “Có ít nhất hai lần xuất hiện mặt sấp” là tập con nào của không gian mẫu.
Hướng dẫn giải
Phép thử tung đồng xu ba lần có không gian mẫu là: Ω = {SSS; SSN; SNN; SNS; NSS; NSN; NNS; NNN}.
Khi đó, biến cố A tương ứng với tập con {SSS; SSN; SNS; NSS}.
Vậy A = {SSS; SSN; SNS; NSS}.
b) Biến cố không. Biến cố chắc chắn
Xét phép thử T với không gian mẫu Ω. Mỗi biến cố là một tập con của tập Ω. Vì thế, tập hợp ∅ cũng là một biến cố, gọi là biến cố không thể (gọi tắt là biến cố không). Còn tập hợp Ω gọi là biến cố chắc chắn.
Ví dụ: Khi gieo một con xúc xắc hai lần liên tiếp. Biến cố A: “Tổng số chấm của hai lần gieo bằng 1” là biến cố không. Biến cố B: “Tổng số chấm hai lần gieo nhỏ hơn 13” là biến cố chắc chắn.
c) Biến cố đối
Tập con Ω\A xác định một biến cố, gọi là biến cố đối của biến cố A, kí hiệu là A¯ .
Chú ý: Nếu biến cố A được mô tả dưới dạng mệnh đề toán học Q thì biến cố đối A¯ được mô tả bằng mệnh đề phủ định của mệnh đề Q (tức là mệnh đề Q¯ ).
Ví dụ: Xét phép thử “Tung một đồng xu”. Hãy xác định biến cố đối của biến cố A: “Đồng xu xuất hiện mặt ngửa”.
Hướng dẫn giải
Khi tung một đồng xu thì sẽ xuất hiện mặt sấp (S) hoặc mặt ngửa (N).
Khi đó biến cố đối của biến cố A: “Đồng xu xuất hiện mặt ngửa” là A¯: “Đồng xu xuất hiện mặt sấp”.
Vậy biến cố đối của biến cố A là A¯: “Đồng xu xuất hiện mặt sấp”.
3. Xác suất của biến cố
Xác suất của biến cố A, kí hiệu là P(A), bằng tỉ số n(A)n(Ω), ở đó n(A), n(Ω) lần lượt là số phần tử của hai tập hợp A và Ω. Như vậy P(A) = n(A)n(Ω).
Ví dụ: Với phép thử tung đồng xu ba lần liên tiếp. Tính xác suất của biến cố A: “Có ít nhất hai lần xuất hiện mặt sấp”.
Hướng dẫn giải
Phép thử tung đồng xu ba lần có không gian mẫu là: Ω = {SSS; SSN; SNN; SNS; NSS; NSN; NNS; NNN}.
⇒ n(Ω) = 8.
Khi đó, các kết quả thuận lợi cho biến cố A là: SSS; SSN; SNS; NSS.
⇒ A = {SSS; SSN; SNS; NSS}.
⇒ n(A) = 4.
⇒ P(A) = n(A)n(Ω) = 48 = 12.
Vậy xác suất của biến cố A: “Có ít nhất hai lần xuất hiện mặt sấp” là 12.
II. Tính chất của xác suất
Xét phép thử T với không gian mẫu là Ω. Khi đó, ta có các tính chất sau:
+) P(∅) = 0; P(Ω) = 1;
+) 0 ≤ P(A) ≤ 1 với mỗi biến cố A;
+) PA¯=1−PA với mỗi biến cố A.
Ví dụ: Trong túi có 3 quả bóng màu xanh và 2 quả bóng màu vàng, các quả bóng có kích thước và khối lượng giống nhau. Lấy đồng thời ngẫu nhiên 2 quả bóng.
Tính xác suất cuả các biến cố:
A: “Hai quả bóng lấy ra không phải màu xanh và màu vàng”.
B: “Hai quả bóng lấy ra là màu xanh hoặc màu vàng”.
C: “Hai quả bóng lấy ra khác màu”.
Hướng dẫn giải
Do trong túi chỉ có hai loại bóng màu xanh và màu vàng nên khi lấy ngẫu nhiên hai quả bóng trong túi thì hai quả bóng lấy ra phải là bóng màu xanh hoặc màu vàng.
Do đó biến cố A: “Hai quả bóng lấy ra không phải màu xanh và màu vàng” là biến cố không thể, tức là A = ∅.
Suy ra P(A) = P(∅) = 0.
Biến cố B: “Hai quả bóng lấy ra là màu xanh hoặc màu vàng” luôn luôn xảy ra.
⇒ B = Ω
⇒ P(B) = P(Ω) = 1.
Ta có 3 quả bóng màu xanh, 2 quả bóng màu vàng, nên trong túi có 3 + 2 = 5 quả bóng.
Khi lấy ngẫu nhiên ra 2 trong 5 quả bóng, ta có C52=10 (cách).
Suy ra không gian mẫu Ω có 10 phần tử.
⇒ n(Ω) = 10.
Xét biến cố C: “Hai quả bóng lấy ra khác màu”.
Ta có biến cố đối của C là C¯: “Hai quả bóng lấy ra cùng màu”.
Suy ra hai quả bóng lấy ra cùng là màu xanh hoặc cùng là màu vàng.
+ Hai quả bóng lấy ra cùng là màu xanh, tức là lấy được 2 trong 3 quả bóng màu xanh,  có C32=3 (cách).
+  Hai quả bóng lấy ra cùng là màu vàng, tức là lấy được 2 trong 2 quả bóng màu vàng,  có C22=1 (cách).
Suy ra số cách lấy được hai quả bóng cùng màu là: 3 + 1 = 4 (cách)
⇒ nC¯ = 4.
⇒ PC¯=nC¯nΩ = 410 = 25.
Mặt khác PC¯=1−PC 
⇒ P(C) = 1 – PC¯ = 1 – 25 = 35.
Vậy xác xuất của biến cố C là 35.
III. Nguyên lí xác suất bé
– Nếu một biến cố ngẫu nhiên có xác suất rất bé thì thực tế có thể cho rằng trong một phép thử biến cố đó sẽ không xảy ra.
– Một xác suất như thế nào được xem là bé phải tùy thuộc vào từng bài toán cụ thể.
Ví dụ:
– Mỗi chuyến bay đều có một xác suất rất bé bị xảy ra tai nạn. Nhưng thực tế, tai nạn của một chuyến bay gần như sẽ không xảy ra.
– Xác suất để dù không mở là 0,01(dùng cho nhảy dù) thì không thể coi là bé và không thể dùng loại dù đó. Xác suất để tàu về ga chậm là 0,01 thì có thể xem là tàu về ga đúng giờ.
B. Bài tập tự luyện
B.1 Bài tập tự luận
Bài 1. Một tổ trong lớp 10A có 5 bạn nữ và 4 bạn nam. Giáo viên chọn ngẫu nhiên hai bạn trong tổ đó tham gia đội làm báo tường của lớp. Tính xác suất để hai bạn được chọn có một bạn nam và một bạn nữ.
Hướng dẫn giải
Vì tổ có 5 bạn nữ và 4 bạn nam nên tổ đó có 5 + 4 = 9 (học sinh).
Chọn 2 trong 9 bạn học sinh của tổ đó, ta có C92 = 36 (cách chọn).
Gọi A là biến cố “hai bạn được chọn có một bạn nam và một bạn nữ”.
+ Để chọn được 1 bạn nữ trong 5 bạn nữ, ta có C51 = 5 (cách chọn).
+ Để chọn được 1 bạn nam trong 4 bạn nam, ta có C41 = 4 (cách chọn).
Áp dụng quy tắc nhân ta có 5.4 = 20 cách chọn 1 bạn nữ và 1 bạn nam.
Suy ra n(A) = 20.
Khi đó P(A)=nAnΩ=2036=59.
Vậy xác suất để hai bạn được chọn có một bạn nam và một bạn nữ là 59.
Bài 2. Chọn ngẫu nhiên 4 viên bi từ một túi đựng 5 viên bi đỏ và 6 viên bi xanh, các viên vi có kích thước và khối lượng giống nhau. Gọi A là biến cố: “Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”. Tính P(A) và P(A¯).
Hướng dẫn giải
Có 5 viên bi đỏ và 6 viên bi xanh thì có tất cả 5 + 6 = 11 viên bi.
Chọn 4 viên bi từ 11 viên bi, thì số cách là: C114 = 330 (cách).
⇒ n(Ω) = 330.
Xét biến cố A:“Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”.
Khi đó, biến cố A¯: “trong bốn viên bi chỉ có bi đỏ hoặc chỉ có bi xanh”.
– Nếu 4 viên bi đều là bi đỏ, thì ta chọn 4 trong 5 viên bi đỏ, ta có C54 = 5(cách).
– Nếu 4 viên bi đều là bi xanh, thì ta chọn 4 trong 6 viên bi xanh, ta có C64 = 15 (cách).
Khi đó, ta có 5 + 15 = 20 cách chọn bốn viên bi chỉ có bi đỏ hoặc chỉ có bi xanh.
⇒ n(A¯) = 20.
⇒ P(A¯) = nA¯nΩ = 20330 = 233.
Mặt khác P(A¯) = 1 – P(A) ⇒ P(A) = 1 – P(A¯) = 1 – 233 = 3133.
Vậy P(A) = 3133 và P(A¯) = 233.
B.2 Bài tập trắc nghiệm
Câu 1. Từ các chữ số 1; 2; 4; 6; 8; 9 lấy ngẫu nhiễn một số. Xác suất để lấy được một số nguyên tố là:
A. 12;
B. 13;
C. 14;
D. 16.
Hướng dẫn giải
Đáp án đúng là: D
Ta có : Mỗi lần chọn 1 số bất kì từ 6 số đã cho, ta được một tổ hợp chập 1 của 6 nên n(Ω) = C61= 6
Gọi B là biến cố :”Số lấy ra là số nguyên tố”
Ta có: B = {2} ⇒ n(B) = 1
Vậy P(B) = n(B)n(Ω)=16.
Câu 2. Một nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để 5 bạn được cả nam lẫn nữ mà nam nhiều hơn nữ là:
A. 60143;
B. 238429;
C. 210429;
D. 82143.
Hướng dẫn giải
Đáp án đúng là: B       
Ta có : Mỗi lần chọn 5 bạn ngẫu nhiên từ 15 bạn cho ta một tổ hợp chập 5 của 15 nên n(Ω) =C155= 3 003.
Gọi D là biến cố: “5 bạn được cả nam lẫn nữ mà nam nhiều hơn nữ”.
– Trường hợp 1: Chọn 4 nam, 1 nữ: có C84.C71= 490
– Trường hợp 2: Chọn 3 nam, 2 nữ: có C83.C72= 1 176
Áp dụng quy tắc cộng ta có : n(D) = 490 + 1 176 = 1 666
Vậy P(D) = n(D)n(Ω)= 16663003=238429.
Câu 3. Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ 3 có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa. Tính xác suất để trong 7 hoa được chọn có số hoa hồng bằng hoa ly.
A. 38514845;            
B. 171;
C. 3671;
D. 9944845.
Hướng dẫn giải
Đáp án đúng là: D
Ta có : Mỗi lần chọn 7 bông hoa ngẫu nhiên từ 21 bông hoa cho ta một tổ hợp chập 7 của 21 nên n(Ω) =C217= 116 280.
Gọi F là biến cố:”7 hoa được chọn có số hoa hồng bằng hoa ly”
– Trường hợp 1: Chọn 1 hoa hồng, 1 hoa ly và 5 hoa huệ nên có C81.C71.C65 = 336 cách
– Trường hợp 2: Chọn 2 hoa hồng, 2 hoa ly và 3 hoa huệ nên có C82.C72.C63 = 11 760 cách.
– Trường hợp 3: Chọn 3 hoa hồng, 3 hoa ly và 1 hoa huệ nên có C83.C73.C61 = 11 760 cách.
⇒ n(F) = 336 + 11 760 + 11 760 = 23 856.
Vậy P(F) = n(F)n(Ω) = 23856116280 = 9944845.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Cho khối chóp S.ABCD có đáy là hình vuông, △SAB đều và nằm trong mặt phẳng vuông góc với đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích 84π cm2. Khoảng cách giữa hai đường thẳng SA và BD bằng

Next post

Cho đường tròn tâm O có đường kính AB = 2a nằm trong mặt phẳng (P). Gọi I là điểm đối xứng với O qua A. Lấy điểm S sao cho SI⊥P và SI = 2a. Bán kính R mặt cầu đi qua đường tròn đã cho và điểm S có độ dài là

Bài liên quan:

Lý thuyết Hoán vị. Chỉnh hợp (Cánh diều 2023) hay, chi tiết

Lý thuyết Bài tập cuối chương 5 (Cánh diều 2023) hay, chi tiết

Lý thuyết Nhị thức Newton (Cánh diều 2023) hay, chi tiết

Lý thuyết Tổ hợp (Cánh diều 2023) hay, chi tiết

Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác. Vectơ

Lý thuyết Toán lớp 10 Bài 6: Tích vô hướng của hai vectơ

Lý thuyết Số gần đúng. Sai số (Cánh diều 2023) hay, chi tiết

Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 2: Hình hộp chữ nhật. Hình lập phương
  2. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề toán học. Tập hợp
  3. Lý thuyết Bất phương trình bậc nhất hai ẩn (Cánh diều 2023) hay, chi tiết
  4. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  5. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  8. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
  9. Lý thuyết Toán lớp 10 Bài 3: Dấu của tam thức bậc hai
  10. Lý thuyết Toán lớp 10 Bài 4: Bất phương trình bậc hai một ẩn
  11. Lý thuyết Toán lớp 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai
  12. Lý thuyết Toán lớp 10 Chương 3: Hàm số và đồ thị
  13. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°. Định lí côsin và định lí sin trong tam giác
  14. Lý thuyết Toán lớp 10 Bài 2: Giải tam giác. Tính diện tích tam giác
  15. Lý thuyết Toán lớp 10 Bài 3: Khái niệm vectơ
  16. Lý thuyết Toán lớp 10 Bài 4: Tổng và hiệu của hai vectơ
  17. Lý thuyết Toán lớp 10 Bài 5: Tích của một số với một vectơ
  18. Lý thuyết Toán lớp 10 Bài 6: Tích vô hướng của hai vectơ
  19. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác. Vectơ
  20. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây
  21. Lý thuyết Hoán vị. Chỉnh hợp (Cánh diều 2023) hay, chi tiết
  22. Lý thuyết Tổ hợp (Cánh diều 2023) hay, chi tiết
  23. Lý thuyết Nhị thức Newton (Cánh diều 2023) hay, chi tiết
  24. Lý thuyết Bài tập cuối chương 5 (Cánh diều 2023) hay, chi tiết
  25. Lý thuyết Số gần đúng. Sai số (Cánh diều 2023) hay, chi tiết
  26. Lý thuyết Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Cánh diều 2023) hay, chi tiết
  27. Lý thuyết Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Cánh diều 2023) hay, chi tiết
  28. Lý thuyết Xác suất của biến cố trong một số trò chơi đơn giản (Cánh diều 2023) hay, chi tiết
  29. Lý thuyết Bài tập cuối chương 6 (Cánh diều 2023) hay, chi tiết
  30. Lý thuyết Tọa độ của vectơ (Cánh diều 2023) hay, chi tiết
  31. Lý thuyết Biểu thức tọa độ của các phép toán vectơ (Cánh diều 2023) hay, chi tiết
  32. Lý thuyết Phương trình đường thẳng (Cánh diều 2023) hay, chi tiết

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán