Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Học Toán lớp 10 - Cánh Diều

Lý thuyết Xác suất của biến cố trong một số trò chơi đơn giản (Cánh diều 2023) hay, chi tiết

By admin 09/04/2023 0

Với tóm tắt lý thuyết Toán lớp 10 Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.
Lý thuyết Toán lớp 10 Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản
A. Lý thuyết
I. Xác suất của biến cố trong trò chơi tung đồng xu
– Trong trò chơi tung đồng xu, ta quy ước đồng xu là cân đối và đồng chất.
Nhận xét:
Khi tung một đồng xu hai lần liên tiếp:
+ Tập hợp Ω các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung là Ω = {SS; SN; NS; NN}, trong đó, chẳng hạn SN là kết quả “Lần thứ nhất đồng xu xuất hiện mặt sấp, lần thứ hai đồng xu xuất hiện mặt ngửa”.
+ Tập hợp Ω gọi là không gian mẫu trong trò chơi tung một đồng xu hai lần liên tiếp.
– Trong trò chơi tung một đồng xu hai lần liên tiếp, đối với mỗi biến cố A ta có định nghĩa cổ điển của xác suất như sau:
Xác suất của biến cố A, kí hiệu P(A), là tỉ số giữa số các kết quả thuận lợi cho biến cố A và số phần tử của không gian mẫu Ω:
P(A) = n(A)n(Ω),
ở đó n(A), n(Ω) lần lượt là số phần tử của hai tập hợp A và Ω.
Ví dụ: Tung một đồng xu hai lần liên tiếp.
a) Viết tập hợp Ω là không gian mẫu của trò chơi trên.
b) Xét biến cố A: “Có một lần đồng xu xuất hiện mặt sấp”. Tính xác suất của biến cố A.

Hướng dẫn giải
a) Không gian mẫu của trò chơi trên là: Ω = {SS; SN; NS; NN}.
Vậy không gian mẫu là Ω = {SS; SN; NS; NN}.
b) Từ Ω = {SS; SN; NS; NN} ⇒ n(Ω) = 4.
Có hai kết quả thuận lợi cho biến cố A là SN, NS, tức là A = {SN; NS} ⇒ n(A) = 2.
⇒ Xác suất của biến cố A là P(A) = n(A)n(Ω)= 24 = 12.
Vậy xác suất của biến cố A bằng 12.
II. Xác suất của biến cố trong trò chơi gieo xúc xắc
– Trong trò chơi gieo xúc xắc, ta quy ước xúc xắc là cân đối và đồng chất.
Nhận xét: Khi gieo một xúc xắc hai lần liên tiếp, có 36 kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo, đó là:
(1; 1)            (1; 2)          (1; 3)           (1; 4)           (1; 5)            (1; 6)
(2; 1)           (2; 2)           (2; 3)           (2; 4)           (2; 5)            (2; 6)
(3; 1)           (3; 2)           (3; 3)           (3; 4)           (3; 5)            (3; 6)
(4; 1)           (4; 2)           (4; 3)           (4; 4)           (4; 5)            (4; 6)
(5; 1)           (5; 2)           (5; 3)           (5; 4)           (5; 5)            (5; 6)
(6; 1)           (6; 2)           (6; 3)            (6; 4)          (6; 5)            (6; 6)
+ Tập hợp Ω các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo là Ω = {(i; j)| i, j = 1, 2, 3, 4, 5, 6}, trong đó (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”.
+ Tập hợp Ω gọi là không gian mẫu trong trò chơi gieo một xúc xắc hai lần liên tiếp.
– Trong trò chơi gieo một xúc xắc hai lần liên tiếp, đối với mỗi biến cố C ta có định nghĩa cổ điển của xác suất như sau:
Xác suất của biến cố C, kí hiệu P(C), là tỉ số giữa số các kết quả thuận lợi cho biến cố C và số phần tử của không gian mẫu Ω:
P(C) = n(C)n(Ω),
ở đó n(C), n(Ω) lần lượt là số phần tử của hai tập hợp C và Ω.
Ví dụ: Gieo một con xúc xắc hai lần liên tiếp.
a) Viết tập hợp Ω là không gian mẫu của trò chơi trên.
b) Xét biến cố C: “Hai lần gieo xuất hiện ít nhất một mặt là số chẵn”. Tính xác suất của biến cố C.
Hướng dẫn giải
Không gian mẫu của trò chơi gieo một con xúc xắc hai lần là: Ω = {(i; j)| i, j = 1, 2, 3, 4, 5, 6}, trong đó (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”.
Vậy ta có không gian mẫu của trò chơi gieo một con xúc xắc hai lần là:
Ω = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6); (5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)}.
b) Từ Ω = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6); (5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)}.
⇒ n(Ω) = 36.
Các kết quả thuận lợi cho biến cố C là: (1; 2); (1; 4); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 2); (3; 4); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6); (5; 2); (5; 4); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6).
⇒ C = {(1; 2); (1; 4); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 2); (3; 4); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6); (5; 2); (5; 4); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)}.
⇒ n(C) = 27.
⇒ P(C) = n(C)n(Ω)= 2736 = 34.
Vậy xác suất của biến cố C là 34.
B. Bài tập tự luyện
B.1 Bài tập tự luận
Bài 1. Gieo một con xúc xắc hai lần liên tiếp.
a) Viết tập hợp Ω là không gian mẫu của trò chơi trên.
b) Xét biến cố B: “Tổng số chấm của hai lần gieo nhỏ hơn 5”. Tính xác suất của biến cố B.
Hướng dẫn giải
Không gian mẫu của trò chơi gieo một con xúc xắc hai lần là: Ω = {(i; j)| i, j = 1, 2, 3, 4, 5, 6}, trong đó (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”.
Vậy ta có không gian mẫu của trò chơi gieo một con xúc xắc hai lần là:
Ω = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6); (5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)}.
b) Từ không gian mẫu Ω ở câu a ⇒ n(Ω) = 36.
Các kết quả thuận lợi cho biến cố B là: (1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (3; 1).
⇒ B = {(1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (3; 1)}.
⇒ n(B) = 6.
⇒ P(B) = n(B)n(Ω)= 636 = 16.
Vậy xác suất của biến cố B là 16.
Bài 2. Tung một đồng xu hai lần liên tiếp.
a) Viết tập hợp Ω là không gian mẫu của trò chơi trên.
b) Xét biến cố A: “Có ít nhất một lần xuất hiện mặt sấp”. Tính xác suất của biến cố A.
Hướng dẫn giải
a) Không gian mẫu của trò chơi trên là: Ω = {SS; SN; NS; NN}.
Vậy không gian mẫu là Ω = {SS; SN; NS; NN}.
b) Từ Ω = {SS; SN; NS; NN} ⇒ n(Ω) = 4.
Có ba kết quả thuận lợi cho biến cố A là SS, SN, NS, tức là A = {SS; SN; NS} ⇒ n(A) = 3.
⇒ Xác suất của biến cố A là P(A) = n(A)n(Ω)= 34.
Vậy xác suất của biến cố A bằng 34.
B.2 Bài tập trắc nghiệm
Câu 1. Xác định số phần tử của không gian mẫu các kết quả có thể xảy ra đối với mặt xuất hiện của một xúc xắc sau 3 lần gieo.
A. 36;
B. 216;
C. 18;
D. 108.
Hướng dẫn giải
Đáp án đúng là: B
Ta xem việc thực hiện gieo xúc xắc 3 lần là một công việc gồm 3 giai đoạn:
Giai đoạn 1: Gieo xúc xắc lần 1 – có 6 kết quả có thể xảy ra.
Giai đoạn 2: Gieo xúc xắc lần 3 – có 6 kết quả có thể xảy ra.
Giai đoạn 3: Gieo xúc xắc lần 3 – có 6 kết quả có thể xảy ra.
Do đó, khi thực hiện gieo xúc xắc 3 lần thì theo quy tắc nhân có 6 . 6 . 6 = 216 có thể xảy ra.
Vậy không gian mẫu có 216 phần tử.
Câu 2. Gieo đồng tiền hai lần. Xác xuất để sau hai lần gieo thì kết quả của 2 lần tung là khác nhau.
A. 13;
B. 12;
C. 14;
D. 34.
Hướng dẫn giải
Đáp án đúng là: B
Ta có: Ω = {SS; SN; NS; NN} ⇒ n(Ω) = 4
Gọi B là biến cố kết quả của hai lần tung đồng xu là khác nhau : B= {SN; NS}.
⇒ n(B) = 2
Vậy xác suất của biến cố B là : n(B)n(Ω) = 24=12.
Câu 3. Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Xác suất để sau hai lần gieo được số chấm giống nhau.
A. 536;
B. 16;
C. 12;
D. 1.
Hướng dẫn giải
Đáp án đúng là: B
Ta có: n (Ω) = 6.6 = 36
Gọi D là biến cố sau hai lần gieo được số chấm giống nhau.
⇒ D = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}
⇒ n(D) = 6.
Vậy xác suất của biến cố D là : n(D)n(Ω) = 636= 16.

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 43 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337π3cm3. Tính thể tích nước ban đầu ở trong bể (làm tròn đến chữ số thập phân thứ nhất).

Next post

Cho khối chóp S.ABCD có đáy là hình vuông, △SAB đều và nằm trong mặt phẳng vuông góc với đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích 84π cm2. Khoảng cách giữa hai đường thẳng SA và BD bằng

Bài liên quan:

Lý thuyết Hoán vị. Chỉnh hợp (Cánh diều 2023) hay, chi tiết

Lý thuyết Bài tập cuối chương 5 (Cánh diều 2023) hay, chi tiết

Lý thuyết Nhị thức Newton (Cánh diều 2023) hay, chi tiết

Lý thuyết Tổ hợp (Cánh diều 2023) hay, chi tiết

Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác. Vectơ

Lý thuyết Toán lớp 10 Bài 6: Tích vô hướng của hai vectơ

Lý thuyết Số gần đúng. Sai số (Cánh diều 2023) hay, chi tiết

Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Leave a Comment Hủy

Mục lục

  1. Lý thuyết Toán lớp 10 Bài 2: Hình hộp chữ nhật. Hình lập phương
  2. Lý thuyết Toán lớp 10 Chương 1: Mệnh đề toán học. Tập hợp
  3. Lý thuyết Bất phương trình bậc nhất hai ẩn (Cánh diều 2023) hay, chi tiết
  4. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  5. Lý thuyết Toán lớp 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
  6. Lý thuyết Toán lớp 10 Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn
  7. Lý thuyết Toán lớp 10 Bài 1: Hàm số và đồ thị
  8. Lý thuyết Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
  9. Lý thuyết Toán lớp 10 Bài 3: Dấu của tam thức bậc hai
  10. Lý thuyết Toán lớp 10 Bài 4: Bất phương trình bậc hai một ẩn
  11. Lý thuyết Toán lớp 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai
  12. Lý thuyết Toán lớp 10 Chương 3: Hàm số và đồ thị
  13. Lý thuyết Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°. Định lí côsin và định lí sin trong tam giác
  14. Lý thuyết Toán lớp 10 Bài 2: Giải tam giác. Tính diện tích tam giác
  15. Lý thuyết Toán lớp 10 Bài 3: Khái niệm vectơ
  16. Lý thuyết Toán lớp 10 Bài 4: Tổng và hiệu của hai vectơ
  17. Lý thuyết Toán lớp 10 Bài 5: Tích của một số với một vectơ
  18. Lý thuyết Toán lớp 10 Bài 6: Tích vô hướng của hai vectơ
  19. Lý thuyết Toán lớp 10 Chương 4: Hệ thức lượng trong tam giác. Vectơ
  20. Lý thuyết Toán lớp 10 Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây
  21. Lý thuyết Hoán vị. Chỉnh hợp (Cánh diều 2023) hay, chi tiết
  22. Lý thuyết Tổ hợp (Cánh diều 2023) hay, chi tiết
  23. Lý thuyết Nhị thức Newton (Cánh diều 2023) hay, chi tiết
  24. Lý thuyết Bài tập cuối chương 5 (Cánh diều 2023) hay, chi tiết
  25. Lý thuyết Số gần đúng. Sai số (Cánh diều 2023) hay, chi tiết
  26. Lý thuyết Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Cánh diều 2023) hay, chi tiết
  27. Lý thuyết Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Cánh diều 2023) hay, chi tiết
  28. Lý thuyết Xác suất của biến cố (Cánh diều 2023) hay, chi tiết
  29. Lý thuyết Bài tập cuối chương 6 (Cánh diều 2023) hay, chi tiết
  30. Lý thuyết Tọa độ của vectơ (Cánh diều 2023) hay, chi tiết
  31. Lý thuyết Biểu thức tọa độ của các phép toán vectơ (Cánh diều 2023) hay, chi tiết
  32. Lý thuyết Phương trình đường thẳng (Cánh diều 2023) hay, chi tiết

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán