Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 7 – Chân trời

Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác

By admin 18/04/2023 0

Giải SBT Toán lớp 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác

Giải trang 63 Tập 1

Bài 1 trang 63 Sách bài tập Toán 7 Tập 1: Một chiếc hộp hình hộp chữ nhật có đáy là hình vuông cạnh 3 cm, chiều cao 7 cm. Nam cắt chiếc hộp thành hai hình lăng trụ đứng tứ giác với kích thước các đoạn cắt trên như Hình 6.

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

Tính thể tích của hai hình lăng trụ đứng tứ giác sau khi cắt.

Lời giải

Quan sát Hình 6 ta thấy hai hình lăng trụ vừa cắt là hai hình lăng trụ đứng tứ giác có đáy là hình thang.

Hình lăng trụ đứng phía trên có chiều cao h1 = 3 cm và đáy là hình thang có các kích thước là 4 cm (đáy lớn), 2 cm (đáy bé), 3 cm (chiều cao hình thang).

Diện tích đáy của hình lăng trụ đứng ở phía trên là: S1 = (4 + 2) . 3 : 2 = 9 (cm2).

Thể tích của hình lăng trụ đứng ở phía trên là: V1 = S1 . h1 = 9 . 3 = 27 (cm3).

Thể tích của hình hộp chữ nhật là: V = 3 . 3 . 7 = 63 (cm3).

Thể tích của hình lăng trụ đứng ở phía dưới là: V2 = V – V1 = 63 – 27 = 36 (cm3).

Bài 2 trang 63 Sách bài tập Toán 7 Tập 1: Mô hình một ngôi nhà có kích thước như Hình 7. Tính thể tích của mô hình ngôi nhà.

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

Lời giải

Cách 1:

Quan sát Hình 7 ta thấy mô hình ngôi nhà gồm hai hình lăng trụ đứng (lăng trụ đứng tam giác và lăng trụ đứng tứ giác) ghép với nhau cùng có chiều cao là h = 17 cm.

+ Hình lăng trụ đứng tứ giác có đáy là hình chữ nhật với các kích thước là 45 cm và 20 cm nên diện tích đáy này là: S1 = 45 . 20 = 900 (cm2).

Thể tích hình lăng trụ đứng tứ giác là: V1 = S1 . h = 900 . 17 = 15 300 (cm3).

+ Hình lăng trụ đứng tam giác có đáy là tam giác có chiều cao là 18 cm và cạnh đáy ứng với chiều cao đó có độ dài là 45 cm nên diện tích đáy này là: S2 = 12 . 18 . 45 = 405 (cm2).

Thể tích hình lăng trụ đứng tam giác là: V2 = S2 . h = 405 . 17 = 6 885 (cm3).

Vậy thể tích của mô hình ngôi nhà là: V = V1 + V2 = 15 300 + 6 885 = 22 185 (cm3).

Cách 2:

Có thể xem mô hình ngôi nhà là hình lăng trụ có đáy là hình gồm một tứ giác và tam giác ghép lại và chiều cao h = 17 cm.

Diện tích mặt đáy là: S = 45 . 20 + 12 . 18 . 45 = 1 305 (cm2).

Thể tích của mô hình ngôi nhà là: V = S . h = 1 305 . 17 = 22 185 (cm3).

Bài 3 trang 63 Sách bài tập Toán 7 Tập 1: Một khối gỗ có kích thước như Hình 8 (đơn vị dm).

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

a) Tính thể tích của khối gỗ.

b) Tính diện tích toàn phần của khối gỗ.

Lời giải

a) Quan sát Hình 8 ta thấy khối gỗ được ghép bởi hai khối hộp chữ nhật.

+ Khối hộp chữ nhật ở phía dưới có kích thước là 10 dm, 8 dm và 10 dm, do đó thể tích của khối hộp chữ nhật phía dưới là: V1 = 10 . 8 . 10 = 800 (dm3).

+ Khối hộp chữ nhật ở phía trên có:

– Chiều dài là 10 dm;

– Chiều rộng là: 10 – 2 – 2 = 6 (dm);

– Chiều cao là: 12 – 8 = 4 (dm).

Thể tích của khối hộp chữ nhật ở phía trên là: V2 = 10 . 6 . 4 = 240 (dm3).

Vậy thể tích của khối gỗ là V = V1 + V2 = 800 + 240 = 1 040 (dm3).

b) Có thể xem khối gỗ là hình lăng trụ có đáy hình gồm 2 hình chữ nhật ghép lại với nhau và chiều cao là h = 10 dm.

Chu vi đáy là: CVđáy = 10 + 8 + 2 + 4 + 6 + 4 + 2 + 8 = 44 (dm).

Diện tích xung quanh của khối gỗ là: Sxq = CVđáy  . h = 44 . 10 = 440 (dm2).

Diện tích hai mặt đáy là: S2đáy = 2 . (10 . 8 + 6 . 4) = 208 (dm2).

Diện tích toàn phần của khối gỗ là: Stp = Sxq + S2đáy = 440 + 208 = 648 (dm2).

Bài 4 trang 63 Sách bài tập Toán 7 Tập 1: Một chi tiết máy bằng thép hình lăng trụ đứng tứ giác có đáy là một hình thoi có độ dài hai đường chéo là 16 cm và 18 cm, chiều cao 10 cm. Người ta khoét một lỗ hình hộp chữ nhật (Hình 9) có kích thước hai cạnh đáy là 2 cm và 6 cm. Tính thể tích còn lại của khối thép.

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

Lời giải

Diện tích đáy hình thoi của khối lăng trụ là: Sđ = 12 . 16 . 18 = 144 (cm2).

Thể tích của hình lăng trụ có đáy là hình thoi là: V = 144 . 10 = 1 440 (cm3).

Lỗ hình hộp chữ nhật có kích thước hai cạnh đáy là 2 cm và 6 cm và chiều cao chính bằng chiều cao của hình lăng trụ có đáy là hình thoi và là 10 cm. Do đó, thể tích cái lỗ hình hộp chữ nhật là: Vl = 2 . 6 . 10 = 120 (cm3).

Thể tích còn lại của khối thép là: Vcl = V – Vl = 1 440 – 120 = 1 320 (cm3).

Bài 5 trang 63 Sách bài tập Toán 7 Tập 1: Tính thể tích của một hình lăng trụ đứng đáy là một tứ giác như Hình 10, có độ dài AC = 5 m, BM = DN = 3 m, chiều cao của lăng trụ 7 m.

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

Lời giải

Từ Hình 10, ta thấy đáy của hình lăng trụ là một tứ giác, ta chia tứ giác đó thành 2 tam giác.

Tam giác ABC có chiều cao BM = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ABC là SABC = 12BM . AC = 12 . 3 . 5 = 152 (m2).

Tam giác ADC có chiều cao DN = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ADC là SADC = 12DN . AC = 12 . 3 . 5 = 152 (m2).

Diện tích đáy của hình lăng trụ đã cho là: Sđ = SABC + SADC = 152 + 152 = 15 (m2).

Thể tích của hình lăng trụ là: V = Sđ . h = 15 . 7 = 105 (m3).

Bài 6 trang 63 Sách bài tập Toán 7 Tập 1: Một bể cá có kích thước như Hình 11, người ta đổ vào đó 6,25 lít nước. Khoảng cách từ mực nước đến miệng bể là bao nhiêu?

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

Lời giải

Bể cá có dạng hình hộp chữ nhật có các kích thước là 20 cm, 50 cm, 25 cm.

Thể tích của bể cá là: 20 . 50 . 25 = 25 000 (cm3).

Đổi: 6,25 lít = 6,25 dm3 = 6 250 cm3.

Thể tích phần bể không chứa nước là: 25 000 – 6 250 = 18 750 (cm3).

Phần bể không chứa nước có dạng hình hộp chữ nhật có kích thước đáy giống bể cá và chiều cao chính là khoảng cách từ mực nước đến miệng bể.

Vậy khoảng cách từ mực nước đến miệng bể là:  (cm).

Giải trang 64 Tập 1

Bài 7 trang 64 Sách bài tập Toán 7 Tập 1: Một khối bê tông hình lăng trụ đứng tam giác, bên trong khoét một cái lỗ có kích thước như Hình 12 (đơn vị dm).

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

Tính thể tích của khối bê tông.

Lời giải

Thể tích của hình lăng trụ đứng tam giác là: V1 = 12.13.16.14=1 456 (dm3).

Phần lỗ khoét có dạng hình hộp chữ nhật với các kích thước là 3 dm, 6 dm và 14 dm nên thể tích cái lỗ là: V2 = 3 . 6 . 14 = 252 (dm3).

Thể tích của khối bê tông là: V = V1 – V2 = 1 456 – 252 = 1 204 (dm3).

Bài 8 trang 64 Sách bài tập Toán 7 Tập 1: Một công trường xây dựng cần 30 khúc gỗ để làm khung cho một tòa nhà. Mỗi khúc gỗ có dạng hình hộp chữ nhật đáy là hình vuông cạnh 0,5 m, chiều dài 8 m. Hỏi phần không gian mà 30 khúc gỗ chiếm là bao nhiêu?

Sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác - Chân trời sáng tạo (ảnh 1)

Lời giải

Thể tích của một khúc gỗ dạng hình hộp chữ nhật là: V1 = 0,5 . 0,5 . 8 = 2 (m3).

30 khúc gỗ có thể tích là: 2 . 30 = 60 (m3).

Vậy phần không gian mà 30 khúc gỗ chiếm có thể tích là 60 m3.

Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác

Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác

Bài tập cuối chương 3

Bài 1: Các góc ở vị trí đặc biệt

Bài 2: Tia phân giác

====== ****&**** =====

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Lý thuyết Định lí và chứng minh định lí (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 7

Next post

Cho hình nón \(\left( N \right)\) có bán kính đáy bằng 3 và đường cao bằng 4. Tính diện tích xung quanh \({S_{xq}}\) của hình nón \(\left( N \right)\).

Bài liên quan:

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ

Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế

Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1

Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học

Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực

Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tập hợp các số hữu tỉ
  2. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Các phép tính với số hữu tỉ
  3. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Lũy thừa của một số hữu tỉ
  4. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Quy tắc dấu ngoặc và quy tắc chuyển vế
  5. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 1
  6. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Số vô tỉ. Căn bậc hai số học
  7. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Số thực. Giá trị tuyệt đối của một số thực
  8. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Làm tròn số và ước lượng kết quả
  9. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 2
  10. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Hình hộp chữ nhật – hình lập phương
  11. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Diện tích xung quanh và thể tích của hình hộp chữ nhật, hình lập phương
  12. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
  13. Sách bài tập Toán 7 (Chân trời sáng tạo) Bài tập cuối chương 3
  14. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Các góc ở vị trí đặc biệt
  15. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tia phân giác
  16. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Hai đường thẳng song song
  17. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Định lí và chứng minh định lí
  18. Sách bài tập Toán 7 Bài tập cuối chương 4 (Chân trời sáng tạo)
  19. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Thu thập và phân loại dữ liệu
  20. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Biểu đồ hình quạt tròn
  21. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Biểu đồ đoạn thẳng
  22. Sách bài tập Toán 7 Bài tập cuối chương 5 (Chân trời sáng tạo)
  23. Chương 6: Các đại lượng tỉ lệ
  24. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Tỉ lệ thức – Dãy tỉ số bằng nhau
  25. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đại lượng tỉ lệ thuận
  26. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Đại lượng tỉ lệ nghịch
  27. Sách bài tập Toán 7 Bài tập cuối chương 6 (Chân trời sáng tạo)
  28. Chương 7: Biểu thức đại số
  29. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Biểu thức số, biểu thức đại số
  30. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Đa thức một biến
  31. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Phép cộng và phép trừ đa thức một biến
  32. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Phép nhân và phép chia đa thức một biến
  33. Sách bài tập Toán 7 Bài tập cuối chương 7 (Chân trời sáng tạo)
  34. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Góc và cạnh của một tam giác
  35. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Tam giác bằng nhau
  36. Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân
  37. Sách bài tập Toán 7 Bài 4 (Chân trời sáng tạo): Đường vuông góc và đường xiên
  38. Sách bài tập Toán 7 Bài 5 (Chân trời sáng tạo): Đường trung trực của một đoạn thẳng
  39. Sách bài tập Toán 7 Bài 6 (Chân trời sáng tạo): Tính chất ba đường trung trực của tam giác
  40. Sách bài tập Toán 7 Bài 7 (Chân trời sáng tạo): Tính chất ba đường trung tuyến của tam giác
  41. Sách bài tập Toán 7 Bài 8 (Chân trời sáng tạo): Tính chất ba đường cao của tam giác
  42. Sách bài tập Toán 7 Bài 9 (Chân trời sáng tạo): Tính chất ba đường phân giác của tam giác
  43. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 8 trang 65, 66
  44. Sách bài tập Toán 7 Bài 1 (Chân trời sáng tạo): Làm quen với biến cố ngẫu nhiên
  45. Sách bài tập Toán 7 Bài 2 (Chân trời sáng tạo): Làm quen với xác suất của biến cố ngẫu nhiên
  46. Sách bài tập Toán 7 (Chân trời sáng tạo): Bài tập cuối chương 9 trang 87, 88

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán