Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Cánh diều

Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 2

By admin 02/09/2023 0

Giải SBT Toán 11 Bài tập cuối chương 2

Bài 47 trang 56 SBT Toán 11 Tập 1: Cho dãy số (un) biết un = 5n – n. Số hạng un + 1 là:

A. 5n + 1 – n – 1.

B. 5n + 1 – n + 1.

C. 5n – n + 1.

D. 5n – n – 1.  

Lời giải:

Đáp án đúng là: A

Ta có: un + 1 = 5n + 1 – (n + 1) = 5n + 1 – n – 1.

Bài 48 trang 56 SBT Toán 11 Tập 1: Cho dãy số (un) biết u1 = 2, un=13un− 1+1  với n ≥  2. Số hạng u4 bằng:

A. u4 = 1.

B. u4=23 .

C. u4=1427 .

D. u4=59 .

Lời giải:

Đáp án đúng là: D

Ta có u2=13u2− 1+1=13u1+1=132+1=1 ;

u3=13u3− 1+1=13u3+1=131+1=23;

u4=13u4− 1+1=13u3+1=1323+1=59.

Bài 49 trang 56 SBT Toán 11 Tập 1: Trong các dãy số (un) với số hạng tổng quát sau, dãy số tăng là:

A. un=23n .

B. un=3n .

C. un = 2n.

D. un = (– 2)n.

Lời giải:

Trong các dãy số đã cho, ta thấy dãy số (un) với un = 2n là dãy số tăng.

Thật vậy, ta có un + 1 = 2n + 1 = 2 . 2n.

Khi đó, un + 1 – un = 2 . 2n – 2n = 2n > 0 với mọi n ∈ ℕ*, tức là un + 1 > un với mọi n ∈ ℕ*.

Vậy dãy số (un) với un = 2n là dãy số tăng.

Bài 50 trang 56 SBT Toán 11 Tập 1: Tổng 20 số tự nhiên liên tiếp chia hết cho 3 tính từ số 3 là:

A. 1 320.

B. 660.

C. 630.

D. 1 260.

Lời giải:

Đáp án đúng là: C

20 số tự nhiên liên tiếp chia hết cho 3 tính từ số 3 lập thành một cấp số cộng với số hạng đầu u1 = 3 và công sai d = 3.

Khi đó, tổng của 20 số này là: Tổng 20 số tự nhiên liên tiếp chia hết cho 3 tính từ số 3 là

Bài 51 trang 57 SBT Toán 11 Tập 1: Trong các dãy số (un) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

A. un=15n .

B. un=1+15n .

C. un=15n+1 .

D. un=1n2 .

Lời giải:

Đáp án đúng là: A

Xét dãy số (un) với un=15n .

Ta có: u1=151=15

un+1=15n+1=15n.5=15.15n=15un không đổi với mọi n ∈ ℕ*.

Vậy dãy số (un) với un=15n  là cấp số nhân với số hạng đầu u1=15  và công bội q=15 .

Bài 52 trang 57 SBT Toán 11 Tập 1: Cho cấp số nhân (un) có tất cả các số hạng đều không âm và u2 = 6, u4 = 24. Tổng 10 số hạng đầu của (un) là:

A. 3(1 – 210).

B. 3(29 – 1).

C. 3(210 – 1).

D. 3(1 – 29).

Lời giải:

Đáp án đúng là: C

Giả sử q là công bội của cấp số nhân (un) (điều kiện q ≠ 0).

Ta có: u2 = u1q = 6; u4 = u1q3 = 24, suy ra u4u2=u1q3u1q=q2=246=4 .

Do đó, q = ± 2.

Mà cấp số nhân (un) có tất cả các số hạng đều không âm nên q = 2.

Từ u2 = u1q = 6, suy ra u1 = 6q  = 3.

Vậy tổng 10 số hạng đầu của (un) là Cho cấp số nhân (un) có tất cả các số hạng đều không âm và u2 = 6, u4 = 24. Tổng 10 số hạng đầu của (un) là

Bài 53 trang 57 SBT Toán 11 Tập 1: Tổng 1 + 11 + 101 + 1001 + …… + 100…01 (12 số hạng) bằng:

A. 1011+1079 .

B. 1012+989 .

C. 1012+1079 .

D. 1011+989 .

Lời giải:

Đáp án đúng là: B

Ta có 1 + 11 + 101 + 1001 + …… + 100…01

= 1 + (10 + 1) + (100 + 1) + (1000 + 1) + … + (100…0 + 1)

= 12 + (10 + 100 + 1000 + … + 100…0)

= 12 + (10 + 102 + 103 + … + 1011)

=12+101−10111−10

=1089+1012−109

=1012+989.

Bài 54 trang 57 SBT Toán 11 Tập 1: Cho dãy số (un) biết Cho dãy số (un) biết  un = cos [(2n + 1) π/6]

a) Viết sáu số hạng đầu của dãy số.

b) Chứng minh rằng un + 6 = un với mọi n ≥ 1.

c) Tính tổng 27 số hạng đầu của dãy số.

Lời giải:

a) Ta có Cho dãy số (un) biết  un = cos [(2n + 1) π/6] ;

Cho dãy số (un) biết  un = cos [(2n + 1) π/6]

Vậy sáu số hạng đầu của dãy số là: 0; −32 ; −32 ; 0; 32 ; 32 . 

b) Ta có

Cho dãy số (un) biết  un = cos [(2n + 1) π/6]

Cho dãy số (un) biết  un = cos [(2n + 1) π/6] với mọi n ≥ 1.

c) Vì un + 6 = un với mọi n ≥ 1 nên

u1 + u2 + u3 + … + u27 = 4 . (u1 + u2 + u3 + u4 + u5 + u6) + u1 + u2 + u3

Cho dãy số (un) biết  un = cos [(2n + 1) π/6]

= −3 .

Bài 55 trang 57 SBT Toán 11 Tập 1: Cho dãy số (un) có tổng n số hạng đầu là Sn=n−1−5n2  với n ∈ ℕ*.

a) Tính u1, u2 và u3.

b) Tìm công thức của số hạng tổng quát u­n.

c) Chứng minh rằng dãy số (un) là một cấp số cộng.

Lời giải:

a) Ta có: u1=S1=1.−1−5.12=−3 .

Vì u1+u2=S2=2.−1−5.22=−11  nên u2 = S2 – u1 = – 11 – (– 3) = – 8.

Vì S2+u3=S3=3−1−5.32=−24  nên u3 = S3 – S2 = – 24 – (– 11) = – 13.

b) Ta có: un = Sn – Sn – 1 =Cho dãy số (un) có tổng n số hạng đầu là Sn= n(-1 -5n)/2  với n ∈ ℕ*

=−n−5n2−n−1−1−5n+52=−n−5n2−−n−5n2+5n+1+5n−52

=−10n+42=2−5n.

Vậy un = 2 – 5n.

c) Ta có: Cho dãy số (un) có tổng n số hạng đầu là Sn= n(-1 -5n)/2  với n ∈ ℕ*, với mọi n ≥ 2.

Vậy dãy số (un) là một cấp số cộng.

Bài 56 trang 57 SBT Toán 11 Tập 1: Cho dãy số (un) biết u1 = 1, u2 = 2, un + 1 = 2un – un – 1 + 2 với n ≥ 2.

a) Viết năm số hạng đầu của dãy số.

b) Đặt vn = un + 1 – un với n ∈ ℕ*. Chứng minh rằng dãy số (vn) là cấp số cộng.

c) Tìm công thức của vn, un tính theo n.

Lời giải:

a) Ta có u1 = 1, u2 = 2, u3 = u2 + 1 = 2u2 – u2 – 1 + 2 = 2 . 2 – 1 + 2 = 5,

u4 = u3 + 1 = 2u3 – u3 – 1 + 2 = 2 . 5 – 2 + 2 = 10,

u5 = u4 + 1 = 2u4 – u4 – 1 + 2 = 2 . 10 – 5 + 2 = 17.

Vậy năm số hạng đầu của dãy số là: 1; 2; 5; 10; 17.

b) Từ công thức un + 1 = 2un – un – 1 + 2 suy ra un + 1 – un = un – un – 1 + 2.

Mà vn = un + 1 – un và vn – 1 = un – 1 + 1 – un – 1 = un – un – 1.

Do đó, vn = vn – 1 + 2 với n ≥ 2.

Vậy dãy số (vn) là một cấp số cộng có số hạng đầu v1 = u2 – u1 = 1 và công sai d = 2.

c) Từ kết quả câu b, ta có: vn = v1 + (n – 1)d = 1 + (n – 1) . 2 = – 1 + 2n.

Lại có: v1 = u2 – u1

            v2 = u3 – u2

            …

            vn – 2 = un – 1 – un – 2

            vn – 1 = un – un – 1

Cộng theo từng vế của n − 1 đẳng thức trên, ta có:

v1 + v2 + … + vn – 2 + vn – 1 = – u1 + un  

         ⇔v1+vn−1n−12=−1+un

         Cho dãy số (un) biết u1 = 1, u2 = 2 trang 57 SBT Toán 11

⇔ (n – 1)2 = un – 1

⇔ un = 1 + (n – 1)2.

Vậy un = 1 + (n – 1)2 và vn = – 1 + 2n với mọi n ∈ ℕ*.

Bài 57 trang 57 SBT Toán 11 Tập 1: Cho dãy số (un), biết u1 = – 2, un+1=n+12nun  với n ∈ ℕ*. Đặt vn=unn  với n ∈ ℕ*.

a) Chứng minh rằng dãy số (vn) là cấp số nhân. Tìm số hạng đầu, công bội của cấp số nhân đó.

b) Tìm công thức của un tính theo n.

Lời giải:

a) Ta có v1=u11=−21=−2 ;

vn+1=un+1n+1=n+12nun:n+1=12.unn=12vn với mọi n ∈ ℕ*.

Vậy dãy số (vn) là một cấp số nhân có số hạng đầu v1 = – 2 và công bội q=12 .

b) Từ kết quả của câu a) suy ra vn=v1.qn−1=−2.12n−1=−12n−2 .

Từ vn=unn , suy ra un=n.vn=−n.12n−2  với mọi n ≥ 2.

Bài 58 trang 58 SBT Toán 11 Tập 1: Một công ty mua một chiếc máy với giá 1 tỉ 200 triệu đồng. Công ty nhận thấy, trong vòng 5 năm đầu, tốc độ khấu hao là 25%/năm (tức là sau mỗi một năm, giá trị còn lại của chiếc máy bằng 75% giá trị của năm trước đó).

a) Viết công thức tính giá trị của chiếc máy đó sau 1 năm, 2 năm.

b) Sau 5 năm, giá trị của chiếc máy đó còn khoảng bao nhiêu triệu đồng (làm tròn đến hàng đơn vị)?

Lời giải:

a) Giá trị của chiếc máy đó sau 1 năm là:

1 200 . 0,75 = 900 (triệu đồng).

Giá trị của chiếc máy đó sau 2 năm là:

1 200 . 0,75 . 0, 75 = 1 200 . 0,752 = 675 (triệu đồng).

b) Sau 5 năm, giá trị chiếc máy đó còn là:

1 200 . 0,755 ≈ 285 (triệu đồng).

Bài 59 trang 58 SBT Toán 11 Tập 1: Một hình vuông có diện tích bằng 1 đơn vị diện tích. Chia hình vuông đó thành 9 hình vuông bằng nhau và tô màu hình vuông ở chính giữa. Với mỗi hình vuông nhỏ chưa được tô màu, lại chia thành 9 hình vuông bằng nhau và tô màu hình vuông ở chính giữa. Cứ như thế, quá trình trên được lặp lại.

a) Tính tổng diện tích phần đã được tô màu ở hình thứ nhất, thứ hai, thứ ba.

b) Dự đoán công thức tính tổng diện tích phần đã được tô màu ở hình thứ n.

 Một hình vuông có diện tích bằng 1 đơn vị diện tích. Chia hình vuông đó thành 9 hình vuông bằng nhau

Lời giải:

a) Diện tích phần đã được tô màu ở hình thứ nhất, hình thứ hai, hình thứ ba lần lượt là:

1−89=19; 1−892=1781; 1−893=217729.

b) Gọi Sn là diện tích phần đã được tô màu ở hình thứ n.

Ta có: Sn = 1 – 89n .

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Next post

Sách bài tập Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số

Bài liên quan:

Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác

Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số

Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng

Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị
  4. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số
  7. Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân
  9. Sách bài tập Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số
  10. Sách bài tập Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
  11. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số liên tục
  12. Sách bài tập Toán 11 Bài tập cuối chương 3 (Cánh diều)
  13. Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian
  14. Sách bài tập Toán 11 Bài 2 (Cánh diều): Hai đường thẳng song song trong không gian
  15. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đường thẳng và mặt phẳng song song
  16. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng song song
  17. Sách bài tập Toán 11 Bài 5 (Cánh diều): Hình lăng trụ và hình hộp
  18. Sách bài tập Toán 11 Bài 6 (Cánh diều): Phép chiếu song song. Hình biểu diễn của một hình không gian
  19. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 4 trang 117
  20. Sách bài tập Toán 11 Bài 1 (Cánh diều): Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm
  21. Sách bài tập Toán 11 Bài 2 (Cánh diều): Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất
  22. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 5 trang 20
  23. Sách bài tập Toán 11 Bài 1 (Cánh diều): Phép tính lũy thừa với số mũ thực
  24. Sách bài tập Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit
  25. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit
  26. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit
  27. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 6
  28. Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
  29. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  30. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  31. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7
  32. Sách bài tập Toán 11 Bài 1 (Cánh diều): Hai đường thẳng vuông góc
  33. Sách bài tập Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng
  34. Sách bài tập Toán 11 Bài 3 (Cánh diều): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  35. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng vuông góc
  36. Sách bài tập Toán 11 Bài 5 (Cánh diều): Khoảng cách
  37. Sách bài tập Toán 11 Bài 6 (Cánh diều): Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
  38. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán