Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Cánh diều

Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit

By admin 09/01/2024 0

Giải SBT Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài 53 trang 49 SBT Toán 11 Tập 2: Nghiệm của phương trình 2x – 1 = 8 là:

A. 2;

B. 4;

C. 3;

D. 5.

Lời giải:

Đáp án đúng là: B

Ta có: 2x – 1 = 8 ⇔ 2x – 1 = 23 ⇔ x – 1 = 3 ⇔ x = 4.

Vậy phương trình có nghiệm là x = 4.

Bài 54 trang 50 SBT Toán 11 Tập 2: Nghiệm của phương trình 2x = 5 là:

A.x=5;

B.x=52;

C. x = log25;

D. x = log52.

Lời giải:

Đáp án đúng là: C

Ta có: 2x = 5 ⇔ x = log25.

Vậy phương trình có nghiệm là x = log25.

Bài 55 trang 50 SBT Toán 11 Tập 2: Nghiệm của phương trình 92x + 1 = 27x – 3 là:

A. x = – 9;

B. x = 11;

C. x = 9;

D. x = – 11.

Lời giải:

Đáp án đúng là: D

Ta có: 92x + 1 = 27x – 3

⇔ 32(2x + 1) = 33(x – 3)

⇔ 2(2x + 1) = 3(x – 3)

⇔ x = – 11.

Vậy phương trình có nghiệm là x = –11.

Bài 56 trang 50 SBT Toán 11 Tập 2: Nghiệm của phương trình log2(x – 5) = 4 là:

A. x = 21;

B. x = 9;

C. x = 13;

D. x = 7.

Lời giải:

Đáp án đúng là: A

Ta có: log2(x – 5) = 4 ⇔ x – 5 = 24 ⇔ x – 5 = 16 ⇔ x = 21.

Vậy phương trình có nghiệm là x = 21.

Bài 57 trang 50 SBT Toán 11 Tập 2: Nghiệm của phương trình log12x−1=−2 là:

A. x = 2;

B. x = 5;

C. x=52;

D. x=32.

Lời giải:

Đáp án đúng là: B

log12x−1=−2⇔x−1=12−2

⇔ x – 1 = 4 ⇔ x = 5.

Vậy phương trình có nghiệm là x = 5.

Bài 58 trang 50 SBT Toán 11 Tập 2: Số nghiệm của phương trình log(x2 – 7x + 12) = log(2x – 8) là:

A. 0;

B. 1;

C. 2;

D. 3.

Lời giải:

Đáp án đúng là: B

log(x2 – 7x + 12) = log(2x – 8)

⇔x2−7x+12=2x−82x−8>0⇔x2−9x+20=0x>4

⇔x=4x=5x>4⇔x=5.

Vậy phương trình có nghiệm x = 5.

Bài 59 trang 50 SBT Toán 11 Tập 2: Nghiệm của bất phương trình 2x < 5 là:

A. x > log25;

B. x < log52;

C. x < log25;

D. x > log52.

Lời giải:

Đáp án đúng là: C

Ta có: 2x < 5 ⇔ x < log25 (do 2 > 1)

Vậy tập nghiệm của bất phương trình là (–∞; log25).

Bài 60 trang 50 SBT Toán 11 Tập 2: Tập nghiệm của bất phương trình log0,2(x + 1) > –3 là:

A. (–1; 124);

B. (124; +∞);

C. −1;−2627;

D. (–∞; 124).

Lời giải:

Đáp án đúng là: A

Do 0 < 0,2 < 1 nên ta có:

log0,2 (x + 1) > –3

⇔ 0 < x + 1 < 0,2–3

⇔ 0 < x + 1 < 125

⇔ –1 < x < 124.

Vậy tập nghiệm của bất phương trình (–1; 124).

Bài 61 trang 50 SBT Toán 11 Tập 2: Giải mỗi phương trình sau:

a) 3x – 1 = 5;

b) 3x2−4x+5=9;

c) 22x+3=82;

d) 8x – 2 = 41 – 2x;

e) 2x2−3x−2=0,25⋅16x−3;

g) 2x2−4x+4=3.

Lời giải:

a) 3x – 1 = 5 ⇔ x – 1 = log35 ⇔ x = log35 + 1.

Vậy phương trình có nghiệm x = log35 + 1.

b) 3x2−4x+5=9⇔3x2−4x+5=32⇔x2−4x+5=2

⇔x2−4x+3=0⇔x=1x=3.

Vậy phương trình có nghiệm x ∈ {1; 3}.

c) 22x+3=82⇔22x+3=23.212⇔22x+3=272

⇔2x+3=72⇔x=14.

Vậy phương trình có nghiệm x=14.

d) 8x – 2 = 41 – 2x ⇔ 23(x – 2) = 22(1 – 2x)

⇔ 3(x – 2) = 2(1 – 2x) ⇔ 7x = 8

⇔x=87.

Vậy phương trình có nghiệm x=87.

Bài 61 trang 50 SBT Toán 11 Tập 2

Vậy phương trình có nghiệm x ∈ {3; 4}.

Bài 61 trang 50 SBT Toán 11 Tập 2

Vậy phương trình có nghiệm x∈2+log23;2−log23.

Bài 62 trang 50 SBT Toán 11 Tập 2: Giải mỗi phương trình sau:

a) log4 (x – 4) = –2;

b) log3 (x2 + 2x) = 1;

c) log25x2−4=12;

d) log9 [(2x – 1)2] = 2;

e) log(x2 – 2x) = log(2x – 3);

g) log2x2+log122x+8=0.

Lời giải:

a) log4 (x – 4) = –2 ⇔ x – 4 = 4–2

⇔x−4=116⇔x=6516.

Vậy phương trình có nghiệm x=6516.

b) log3 (x2 + 2x) = 1 ⇔ x2 + 2x = 31

⇔x2+2x−3=0⇔x=−3x=1.

Vậy phương trình có nghiệm x ∈ {– 3; 1}.

c) log25x2−4=12⇔x2−4=2512

⇔x2−4=5⇔x2=9⇔x=3x=−3.

Vậy phương trình có nghiệm x ∈ {– 3; 3}.

d) log92x−12=2⇔2x−12=92

⇔4x2−4x−80=0⇔x=−4x=5.

Vậy phương trình có nghiệm x ∈ {– 4; 5}.

e) Ta có: logx2−2x=log2x−3

⇔x2−2x=2x−32x−3>0⇔x2−4x+3=0x>32

⇔x=1x=3x>32⇔x=3.

Vậy phương trình có nghiệm x = 3.

g) log2x2+log122x+8=0.

⇔log2x2+log2−12x+8=0

⇔ log2 (x2) – log2 (2x + 8) = 0

⇔ log2 (x2) = log2 (2x + 8)

⇔x2=2x+82x+8>0⇔x2−2x−8=0x>−4

⇔x=−2x=4x>−4⇔x=−2x=4

Vậy phương trình có nghiệm x ∈ {– 2; 4}.

Bài 63 trang 50 SBT Toán 11 Tập 2: Giải mỗi bất phương trình sau:

Bài 63 trang 50 SBT Toán 11 Tập 2

Lời giải:

a) (0,2)2x + 1 > 1 ⇔ (0,2)2x + 1 > 0,20

⇔ 2x + 1 < 0 (do 0 < 0,2 < 1)

⇔ x<−12 .

Vậy bất phương trình có tập nghiệm −∞;−12 .

b) 272x≤19⇔332x≤9−1

⇔33..2x≤32−1⇔36x≤3−2

⇔6x≤−2(do 3 > 1)

⇔x≤−13.

Vậy bất phương trình có tập nghiệm −∞;−13 .

c) 12x2−5x+4≥4⇔2−1x2−5x+4≥22

⇔2−x2+5x−4≥22

⇔ –x2 + 5x – 4 ≥ 2 (vì 2 > 0)

⇔ –x2 + 5x – 6 ≥ 0

⇔ 2 ≤ x ≤ 3.

Vậy bất phương trình có tập nghiệm [2; 3].

d) 125x+1<1252x⇔5−2x+1<532x

⇔ 5–2x – 2 < 56x ⇔ –2x – 2 < 6x (do 5 > 1)

⇔−8x<2⇔x>−14

Vậy bất phương trình có tập nghiệm −14;+∞ .

e) 2−13x−2<2+14−x

Bài 63 trang 50 SBT Toán 11 Tập 2

⇔ 2 – 3x < 4 – x

⇔ –2x < 2 ⇔ x > –1.

Vậy bất phương trình có tập nghiệm (–1; +∞).

Bài 63 trang 50 SBT Toán 11 Tập 2

⇔ x – 2x2 > 2x – 6

⇔ – 2x2 – x + 6 > 0

⇔−2<x<32.

Vậy bất phương trình có tập nghiệm −2;32.

Bài 64 trang 51 SBT Toán 11 Tập 2: Giải mỗi bất phương trình sau:

a) log122x−6<−3;

b) log3 (x2 – 2x + 2) > 0;

c) log42x2+3x≥12;

d) log0,5 (x – 1) ≥ log0,5 (5 – 2x);

e) log(x2 + 1) ≤ log(x + 3);

g) log15x2−6x+8+log5x−4>0.

Lời giải:

a) log122x−6<−3⇔2x−6>12−3 (do 0<12<1)

⇔ 2x – 6 > 8 ⇔ x > 7.

Vậy tập nghiệm của bất phương trình là (7; +∞).

b) log3 (x2 – 2x + 2) > 0

⇔ x2 – 2x + 2 > 30 ⇔ x2 – 2x + 2 > 1

⇔ x2 – 2x + 1 > 0 ⇔ (x – 1)2 > 0 ⇔ x ≠ 1.

Vậy tập nghiệm của bất phương trình là ℝ \ {1}.

c) log42x2+3x≥12⇔2x2+3x≥412

⇔2x2+3x−2≥0⇔x≤−2x≥12.

Vậy tập nghiệm của bất phương trình là −∞;−2∪12;+∞.

d) log0,5 (x – 1) ≥ log0,5 (5 – 2x)

⇔ 0 < x – 1 ≤ 5 – 2x (Vì 0 < 0,5 < 1)

⇔x−1>0x−1≤5−2x⇔x>13x≤6⇔x>1x≤2⇔1<x≤2

Vậy tập nghiệm của bất phương trình là (1 ; 2].

e) log(x2 + 1) ≤ log(x + 3)

⇔ 0 < x2 + 1 ≤ x + 3

⇔ x2 – x – 2 ≤ 0 (do x2 + 1 > 0 với mọi x)

⇔ –1 ≤ x ≤ 2.

Vậy tập nghiệm của bất phương trình là [–1; 2].

g) log15x2−6x+8+log5x−4>0

⇔log5−1x2−6x+8+log5x−4>0

⇔ – log5 (x2 – 6x + 8) + log5 (x – 4) > 0

⇔ log5 (x2 – 6x + 8) < log5 (x – 4)

⇔ 0 < x2 – 6x + 8 < x – 4

⇔x2–6x+8>0x2–6x+8<x−4⇔x>4x<2x2−7x+12<0⇔x>4x<23<x<4⇔x∈∅.

Vậy bất phương trình vô nghiệm.

Bài 65 trang 51 SBT Toán 11 Tập 2: Người ta nuôi cấy vi khuẩn Bacillus subtilis trong nồi lên men và thu được số liệu sau: Lúc ban đầu, số tế bào/1 ml dịch nuôi là 2.102. Sau 13 giờ, số tế bào/1 ml dịch nuôi là 3,33.109. Biết vi khuẩn Bacillus subtilis sinh trưởng trong điều kiện tối ưu và sinh sản theo hình thức tự nhân đôi. Hỏi sau bao nhiêu phút, vi khuẩn Bacillus subtilis tự nhân đôi một lần (làm tròn kết quả đến hàng đơn vị)?

Lời giải:

Đổi 13 giờ = 780 phút.

Gọi T (phút) là thời gian để vi khuẩn Bacillus subtilis tự nhân đôi một lần.

Gọi M0 là số tế bào/1 ml dịch nuôi của vi khuẩn Bacillus subtilis tại thời điểm ban đầu (t = 0). Theo bài ra ta có: M0 = 2.102.

Gọi Mt là số tế bào/1 ml dịch nuôi của vi khuẩn Bacillus subtilis tại thời điểm t.

Sau 13 giờ, số tế bào/1 ml dịch nuôi là 3,33.109 nên ta có: M780 = 3,33 . 109.

Do vi khuẩn Bacillus subtilis sinh trưởng trong điều kiện tối ưu và sinh sản theo hình thức tự nhân đôi nên ta có: Mt=M0.2tT.

Suy ra: M780=M0.2780T⇒3,33.109=2.102.2780T

⇒2780T=1,665.107.

⇒780T=log2(1,665.107)⇒T≈33.

Vậy sau gần 33 phút vi khuẩn Bacillus subtilis tự nhân đôi một lần.

Bài 66 trang 51 SBT Toán 11 Tập 2: Tốc độ của gió S (dặm/giờ) gần tâm của một con lốc xoáy được tính bởi công thức S = 93logd + 65, trong đó d (dặm) là quãng đường cơn lốc xoáy đó di chuyển được.

(Nguồn: Ron Larson, Intermediate Algebra, Cengate)

Tính quãng đường cơn lốc xoáy đã di chuyển được, biết tốc độ của gió ở gần tâm bằng 140 dặm/giờ (làm tròn kết quả đến hàng phần mười).

Lời giải:

Ta có: S = 93logd + 65, trong đó d (dặm) là quãng đường cơn lốc xoáy đó di chuyển được.

Với S = 140 (dặm/giờ) suy ra: 93logd + 65 = 140

⇒logd=7593⇒d=107593≈6,4 (dặm).

Vậy khi tốc độ của gió ở gần tâm bằng 140 dặm/giờ thì cơn lốc xoáy di chuyển được quãng đường gần bằng 6,4 dặm.

Bài 67 trang 51 SBT Toán 11 Tập 2: Dân số thành phố Hà Nội năm 2022 khoảng 8,4 triệu người. Giả sử tỉ lệ tăng dân số hằng năm của Hà Nội không đổi và bằng r = 1,04%. Biết rằng, sau t năm dân số Hà Nội (tính từ mốc năm 2022) ước tính theo công thức: S = A . ert, trong đó A là dân số năm lấy làm mốc. Hỏi từ năm nào trở đi, dân số Hà Nội vượt quá 10 triệu người?

Lời giải:

Vì sau t năm dân số Hà Nội (tính từ mốc năm 2022) ước tính theo công thức:

S = A . ert, trong đó A là dân số năm lấy làm mốc.

Suy ra: A = 8,4 (triệu người).

Theo bài ra ta có: 8,4⋅e1,04100.t>10

⇒e1,04100.t>2521⇒1,04100.t>ln2521

⇒t>125013⋅ln2521

Suy ra t > 16,765.

Vậy sau khoảng 17 năm tính từ mốc năm 2022, tức là từ năm 2039 thì dân số Hà Nội vượt quá 10 triệu người.

Bài 68 trang 51 SBT Toán 11 Tập 2: Mức cường độ âm L (dB) được tính bởi công thức L=10logI10−12, trong đó I (W/m2) là cường độ âm. Để đảm bảo sức khỏe cho công nhân, mức cường độ âm trong một nhà máy phải giữ sao cho không vượt quá 85 dB. Hỏi cường độ âm của nhà máy đó phải thỏa mãn điều kiện nào để đảm bảo sức khỏe cho công nhân?

Lời giải:

Vì mức cường độ âm trong một nhà máy phải giữ sao cho không vượt quá 85 dB nên ta có: L≤85⇔10logI10−12≤85

⇔logI10−12≤8,5⇔logI−log10−12<8,5

⇔logI+12≤8,5⇔logI≤−3,5⇔I≤10−3,5

Vậy cường độ âm của nhà máy đó không vượt quá 10–3,5 (W/m2).

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 2: Các quy tắc tính đạo hàm

Bài 3: Đạo hàm cấp hai

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai

Next post

Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 7

Bài liên quan:

Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác

Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số

Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng

Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị
  4. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số
  7. Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân
  9. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 2
  10. Sách bài tập Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số
  11. Sách bài tập Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
  12. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số liên tục
  13. Sách bài tập Toán 11 Bài tập cuối chương 3 (Cánh diều)
  14. Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian
  15. Sách bài tập Toán 11 Bài 2 (Cánh diều): Hai đường thẳng song song trong không gian
  16. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đường thẳng và mặt phẳng song song
  17. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng song song
  18. Sách bài tập Toán 11 Bài 5 (Cánh diều): Hình lăng trụ và hình hộp
  19. Sách bài tập Toán 11 Bài 6 (Cánh diều): Phép chiếu song song. Hình biểu diễn của một hình không gian
  20. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 4 trang 117
  21. Sách bài tập Toán 11 Bài 1 (Cánh diều): Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm
  22. Sách bài tập Toán 11 Bài 2 (Cánh diều): Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất
  23. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 5 trang 20
  24. Sách bài tập Toán 11 Bài 1 (Cánh diều): Phép tính lũy thừa với số mũ thực
  25. Sách bài tập Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit
  26. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit
  27. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 6
  28. Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
  29. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  30. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  31. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7
  32. Sách bài tập Toán 11 Bài 1 (Cánh diều): Hai đường thẳng vuông góc
  33. Sách bài tập Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng
  34. Sách bài tập Toán 11 Bài 3 (Cánh diều): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  35. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng vuông góc
  36. Sách bài tập Toán 11 Bài 5 (Cánh diều): Khoảng cách
  37. Sách bài tập Toán 11 Bài 6 (Cánh diều): Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
  38. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán