Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Cánh diều

Sách bài tập Toán 11 Bài tập cuối chương 3 (Cánh diều)

By admin 02/09/2023 0

Giải SBT Toán 11 Bài tập cuối chương 3

Bài 32 trang 82 SBT Toán 11 Tập 1: Cho limun = 2, limvn = 3. Khi đó, lim(un + vn) bằng:

A. 6.

B. 5.

C. 1

D. 2.

Lời giải:

Đáp án đúng là: B

Ta có lim(un + vn) = limun + limvn = 2 + 3 = 5.

Bài 33 trang 82 SBT Toán 11 Tập 1: Cho limun = 3, lim vn = +∞. Khi đó limvnun  bằng:

A. 3.

B. –∞.

C. +∞.

D. 0.

Lời giải:

Đáp án đúng là: C

Vì limun = 3 > 0, lim vn = +∞ nên limvnun=+∞ .

Bài 34 trang 82 SBT Toán 11 Tập 1: Cho hai dãy số (un), (vn) với un=1−2n , vn=4+2n+2 . Khi đó, limun+vn  bằng:

A. 3.

B. 4.

C. 5.

D. 2.

Lời giải:

Đáp án đúng là: A

Ta có limun=lim1−2n=lim1−lim2n=1−0=1;

Và limvn=lim4+2n+2=lim4+lim2n+2=4+0=4 .

Suy ra limvn=4=2 .

Khi đó limun+vn =limun+limvn=1+2=3.

Bài 35 trang 82 SBT Toán 11 Tập 1: Biểu diễn dưới dạng phân số của 1,(7) là:

A. 79 .

B. 109 .

C. 103 .

D. 169 .

Lời giải:

Đáp án đúng là: D

Ta có: 1,(7) = 1 + 0,(7) = 1 + 0,7 + 0,07 + 0,007 + … + 0,00007 + …

Vì 0,7; 0,07; 0,007; … lập thành một cấp số nhân lùi vô hạn với số hạng đầu u1 = 0,7 và công bội q = 0,1 < 1 nên

0,7 + 0,07 + 0,007 + … + 0,00007 + … = 0,71−0,1=79 .

Vậy 1,(7) = 1 + 79=169 .

Bài 36 trang 82 SBT Toán 11 Tập 1: Cho limx→2fx=5 . Khi đó, limx→22fx  bằng:

A. 5.

B. 2.

C. 10.

D. 7.

Lời giải:

Đáp án đúng là: C

Ta có limx→22fx=limx→22.limx→2fx=2.5=10.

Bài 37 trang 82 SBT Toán 11 Tập 1: Giả sử limx→3+fx=4, limx→3−fx=2 . Khi đó limx→3fx  bằng:

A. 4.

B. 2.

C. 6.

D. Không tồn tại.

Lời giải:

Đáp án đúng là: D

Ta có limx→3+fx=4, limx→3−fx=2 nên limx→3+fx≠ limx→3−fx .

Suy ra không tồn tại limx→3fx .

Bài 38 trang 82 SBT Toán 11 Tập 1: Nếu limx→afx=+∞  thì Bài 38 trang 82 SBT Toán 11 Tập 1  bằng:

A. +∞.

B. –∞.

C. a.

D. – a.

Lời giải:

Đáp án đúng là: B

Ta có: Bài 38 trang 82 SBT Toán 11 Tập 1.

Mà limx→a−1=−1<0  và limx→afx=+∞ .

Do vậy, limx→a−1.limx→afx=−∞ . Vậy Bài 38 trang 82 SBT Toán 11 Tập 1 .

Bài 39 trang 82 SBT Toán 11 Tập 1: Quan sát đồ thị hàm số trong Hình 9 và cho biết:

 Quan sát đồ thị hàm số trong Hình 9 và cho biết

a) limx→+∞fx  bằng:

A. 2.

B. 1. 

C. +∞.

D. –∞.

b) limx→0+fx  bằng:

A. 2.

B. 1.

C. +∞.

D. –∞.

c) Hàm số y = f(x) liên tục trên khoảng:

A. (–∞; 1).

B. (–∞; +∞).

C. (1; +∞).

D. (–∞; 2).

Lời giải:

a) Đáp án đúng là: A

Quan sát đồ thị ta thấy khi x → +∞ thì f(x) → 2.

Vậy limx→+∞fx=2.

b) Đáp án đúng là: D

Quan sát đồ thị ta thấy limx→0+fx=−∞.

c) Đáp án đúng là: C

Quan sát đồ thị ta thấy, hàm số y = f(x) liên tục trên khoảng (1; +∞).

Bài 40 trang 83 SBT Toán 11 Tập 1: Hàm số nào sau đây không liên tục trên tập xác định của nó?

A. y = x.

B. y=1x .

C. y = sin x.

D. Hàm số nào sau đây không liên tục trên tập xác định của nó?

Lời giải:

Đáp án đúng là: D

– Các hàm số y = x, y = sin x liên tục trên ℝ.

– Hàm số y=1x liên tục trên các khoảng xác định của nó là (–∞; 0) và (0; +∞).

– Xét hàm số Hàm số nào sau đây không liên tục trên tập xác định của nó?   có tập xác định D = ℝ.

Xét tại x = 0, ta có: limx→0+fx=1, limx→0−fx=0 .

Suy ra không tồn tại limx→0fx . Vậy hàm số này không liên tục tại x = 0.

Do vậy hàm số Hàm số nào sau đây không liên tục trên tập xác định của nó?   không liên tục trên tập xác định của nó.

Bài 41 trang 83 SBT Toán 11 Tập 1: Hàm số y = tan x gián đoạn tại bao nhiêu điểm trên khoảng (0; 2π)?

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải:

Đáp án đúng là: C

Hàm số y = tan x có tập xác định D=ℝ\π2+kπ|k∈ℤ .

Trong khoảng (0; 2π), hàm số y = tan x không xác định tại các điểm x=π2 , x=3π2 .

Vì hàm số y = tan x liên tục trên từng khoảng xác định của nó nên trong khoảng (0; 2π), hàm số này không liên tục tại hai điểm x=π2 , x=3π2 .

Bài 42 trang 83 SBT Toán 11 Tập 1: Tính các giới hạn sau:

a) lim2n−45 ;                                   b) lim1+12n2n ;

c) lim2+74n ;                                 d) lim−4n2−32n2−n+5 ;

e) lim9n2+2n+1n−5 ;                        g) lim3n+4.9n3.4n+9n .

Lời giải:

a) Vì lim(2n – 4) = +∞ và lim5 = 5 > 0 nên lim2n−45=+∞ .                              

b) lim1+12n2n =limn1n+12n22n =lim1n+12n22=lim1n+12n2lim2=02=0   .

c)Tính các giới hạn sau trang 83 SBT Toán 11

=lim2+lim7.lim14n=2+7.0=2.          

d) lim−4n2−32n2−n+5 =limn2−4−3n2n22−1n+5n2 =lim−4−3n22−1n+5n2 

=lim−4−3n2lim2−1n+5n2 =−42=−2.

e) lim9n2+2n+1n−5 =limn29+2n+1n2n−5 =limn9+2n+1n2n1−5n

=lim9+2n+1n21−5n=lim9+2n+1n2lim1−5n=91=3.                        

Tính các giới hạn sau trang 83 SBT Toán 11

Bài 43 trang 83 SBT Toán 11 Tập 1: Cho tam giác T1 có diện tích bằng 1. Giả sử có tam giác T2 đồng dạng với tam giác T1, tam giác T3 đồng dạng với tam giác T2, …, tam giác Tn đồng dạng với tam giác Tn – 1 với tỉ số đồng dạng 1k k>1 . Khi n tiến tới vô cùng, tính tổng diện tích của tất cả các tam giác theo k.

Lời giải:

Gọi diện tích các tam giác T1; T2; …; T­n – 1; Tn lần lượt là S1; S2; …; Sn – 1; Sn.

Vì tam giác Tn đồng dạng với tam giác Tn – 1 với tỉ số đồng dạng 1k   nên diện tích tam giác Tn bằng 1k2  diện tích tam giác Tn – 1 hay Sn=1k2Sn−1 .

Vì k > 1 nên 1k2<1 . Vậy S1; S2; …; Sn – 1; Sn; … lập thành một cấp số nhân lùi vô hạn có số hạng đầu S1 = 1 và công bội q=1k2 .

Khi đó, tổng diện tích của tất cả các tam giác nếu n tiến tới vô cùng là:

S = S1 + S2 + … + Sn – 1 + Sn + … = 11−1k2=k2k2−1 .

Bài 44 trang 83 SBT Toán 11 Tập 1: Tính các giới hạn sau:

a) limx→−∞2+43xx2−1 ;                         b) limx→2+1x−2 ;                            c) limx→−3+−5+xx+3 ;

d) limx→−∞14x+2−7x+1 ;                        e) limx→+∞−2x23x+5 ;                          g) limx→−∞4x2+1x+2 ;

h) limx→1x−1x2−1 ;                            i) limx→2x2−5x+6x−2 ;                     k) limx→3−x2+4x−3x2+3x−18 .

Lời giải:

a) limx→−∞2+43xx2−1 =limx→−∞2x2+43x31−1x2 =limx→−∞2x2+43x3limx→−∞1−1x2=01=0  .

b) limx→2+1x−2=+∞ .                            

c) Vì limx→−3+−5+x=−8<0 ; limx→−3+x+3=0  và x + 3 > 0 với mọi x > – 3.

Do đó, limx→−3+−5+xx+3=−∞.

d) limx→−∞14x+2−7x+1 =limx→−∞14+2x−7+1x=14−7=−2 .                         

e) limx→+∞−2x23x+5 =limx→+∞−23x+5x2=−∞ .                        

g) Tính các giới hạn sau trang 83 SBT Toán 11

=limx→−∞−4+1x21+2x=−41=−2.

h) limx→1x−1x2−1 =limx→1x−1x−1x+1=limx→11x+1=12 .             

i) limx→2x2−5x+6x−2 =limx→2x−2x−3x−2=limx→2x−3=−1 .           

k) limx→3−x2+4x−3x2+3x−18=limx→3x−13−xx+6x−3 =limx→3−x−1x+6=−29 .

Bài 45 trang 83 SBT Toán 11 Tập 1: Cho hàm số Cho hàm số trang 83 SBT Toán 11 . Tìm a để hàm số liên tục trên ℝ. ….

Lời giải:

Với x ≠ 2 thì fx=x2−4x−2  liên tục trên hai khoảng (–∞; 2) và (2; +∞). 

Ta có: f(2) = a; limx→2fx=limx→2x2−4x−2=limx→2x−2x+2x−2=limx→2x+2=4 .

Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 2.

Khi đó f2=limx→2fx  hay a = 4.

Vậy hàm số liên tục trên ℝ khi a = 4.

Bài 46 trang 84 SBT Toán 11 Tập 1: Một bể chứa 5 000 l nước tinh khiết. Nước muối có chứa 30 gam muối trên mỗi lít nước được bơm vào bể với tốc độ 25 l/phút.

a) Chứng minh rằng nồng độ muối của nước trong bể sau t phút (tính bằng khối lượng muối chia thể tích nước trong bể, đơn vị: g/l) là Ct=30t200+t .

b) Tính limt→+∞Ct  và cho biết ý nghĩa của kết quả đó.

Lời giải:

a) Sau t phút thì lượng muối trong bể là 30 . 25 . t = 750t (g) và thể tích nước trong bể là 5 000 + 25t (l).

Vậy nồng độ muối của nước trong bể sau t phút là:

 Ct=750t5000+25t=30t200+t(g/l).

b) Ta có: limt→+∞Ct=limt→+∞30t200+t=limt→+∞30200t+1=301=30 .

Theo kết quả đó, ta thấy khi lượng nước trong bể tăng theo thời gian đến vô hạn thì nồng độ muối của nước sẽ tăng dần đến giá trị 30 g/l, tức là xấp xỉ nồng độ muối của loại nước muối cho thêm vào bể.

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Soạn bài Chí Phèo | Kết nối tri thức Ngữ văn lớp 11

Next post

TOP 10 bài Chọn một tác phẩm truyện để lại cho bạn nhiều ấn tượng về cách kể chuyện 2023 SIÊU HAY

Bài liên quan:

Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác

Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số

Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng

Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị
  4. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số
  7. Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân
  9. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 2
  10. Sách bài tập Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số
  11. Sách bài tập Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
  12. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số liên tục
  13. Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian
  14. Sách bài tập Toán 11 Bài 2 (Cánh diều): Hai đường thẳng song song trong không gian
  15. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đường thẳng và mặt phẳng song song
  16. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng song song
  17. Sách bài tập Toán 11 Bài 5 (Cánh diều): Hình lăng trụ và hình hộp
  18. Sách bài tập Toán 11 Bài 6 (Cánh diều): Phép chiếu song song. Hình biểu diễn của một hình không gian
  19. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 4 trang 117
  20. Sách bài tập Toán 11 Bài 1 (Cánh diều): Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm
  21. Sách bài tập Toán 11 Bài 2 (Cánh diều): Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất
  22. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 5 trang 20
  23. Sách bài tập Toán 11 Bài 1 (Cánh diều): Phép tính lũy thừa với số mũ thực
  24. Sách bài tập Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit
  25. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit
  26. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit
  27. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 6
  28. Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
  29. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  30. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  31. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7
  32. Sách bài tập Toán 11 Bài 1 (Cánh diều): Hai đường thẳng vuông góc
  33. Sách bài tập Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng
  34. Sách bài tập Toán 11 Bài 3 (Cánh diều): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  35. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng vuông góc
  36. Sách bài tập Toán 11 Bài 5 (Cánh diều): Khoảng cách
  37. Sách bài tập Toán 11 Bài 6 (Cánh diều): Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
  38. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán