Skip to content

Trang Học trực tuyến

  • Môn Toán

Trang Học trực tuyến

  • Home » 
  • Giải SBT Toán 11 – Cánh diều

Sách bài tập Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit

By admin 09/01/2024 0

Giải SBT Toán 11 Bài 2: Phép tính lôgarit

Giải SBT Toán 11 trang 37

Bài 17 trang 37 SBT Toán 11 Tập 2: Cho a > 0, a ≠ 2. Giá trị của loga2a24 bằng:

A. 12

B. 2;

C. −12;

D. – 2.

Lời giải:

Đáp án đúng là: B

Với a > 0, a ≠ 2 ta có: loga2a24=loga2a222=loga2a22=2.

Bài 18 trang 37 SBT Toán 11 Tập 2: Cho a > 0, a ≠ 1. Giá trị của logaaa bằng:

A. 43

B. 32

C. 34

D. 18

Lời giải:

Đáp án đúng là: C

Với a > 0, a ≠ 1 ta có:

logaaa=logaa.a1212=logaa3212=logaa32.12=logaa34=34.

Bài 19 trang 37 SBT Toán 11 Tập 2: Cho a > 0. Giá trị của log28a bằng:

A. 3 – log2 a;

B. 4 – log2 a;

C. 1log2a;

D. 8 – log2 a.

Lời giải:

Đáp án đúng là: A

Với a > 0 ta có:

log28a=log28−log2a=log223−log2a

= 3log22 – log2 a = 3 – log2 a.

Bài 20 trang 37 SBT Toán 11 Tập 2: Nếu logab = 2, logac = 3, thì loga(b2c3) bằng:

A. 108;

B. 13;

C. 31;

D. 36.

Lời giải:

Đáp án đúng là: B

Với a > 0, b > 0, c > 0, a ≠ 1 ta có:

loga(b2c3) = logab2 + logac3 = 2logab + 3logac = 2.2 + 3.3 = 13.

Giải SBT Toán 11 trang 38

Bài 21 trang 38 SBT Toán 11 Tập 2: Cho a > 0. Giá trị của ln(9a) – ln(3a) bằng:

A. ln(6a);

B. ln6;

C. ln9ln3;

D. ln3.

Lời giải:

Đáp án đúng là: D

Với a > 0 ta có:

ln(9a) – ln(3a) = ln(3.3a) – ln(3a)

= ln3 + ln(3a) – ln(3a) = ln3.

Bài 22 trang 38 SBT Toán 11 Tập 2: Cho a > 0, b > 0. Mệnh đề đúng là:

Cho a > 0, b > 0. Mệnh đề đúng là

Lời giải:

Đáp án đúng là: A

Với a > 0, b > 0 ta có:

log22a3b=log22a3−log2b

= log22 + log2a3 – log2b = 1 + 3log2a – log2b.

Bài 23 trang 38 SBT Toán 11 Tập 2: Cho a > 0, a ≠ 1 và b > 0. Mệnh đề đúng là:

Cho a > 0, a ≠ 1 và b > 0. Mệnh đề đúng là

Lời giải:

Đáp án đúng là: D

Với a > 0, a ≠ 1 và b > 0 ta có:

loga2ab=12logaab=12logaa+logab

=121+logab=12+12logab.

Bài 24 trang 38 SBT Toán 11 Tập 2: Nếu log23 = a thì log69 bằng:

Bài 24 trang 38 SBT Toán 11 Tập 2

Lời giải:

Đáp án đúng là: D

Nếu log23 = a thì log69=log29log26=log232log23+log22

=2log23log23+1=2aa+1.

Bài 25 trang 38 SBT Toán 11 Tập 2: Nếu logab = 5 thì loga2bab2 bằng:

A. 117

B. 1;

C. 4;

D. 267

Lời giải:

Đáp án đúng là: A

Với a > 0, b > 0, a ≠ 1 và logab = 5 thì

loga2bab2=logaab2logaa2b=logaa+logab2logaa2+logab

=1+2logab2+logab=1+2⋅52+5=117.

Bài 26 trang 38 SBT Toán 11 Tập 2: Cho a > 0, b > 0 thỏa mãn a2 + b2 = 7ab. Khi đó, log(a+b) bằng:

Cho a > 0, b > 0 thỏa mãn a^2 + b^2 = 7ab

Lời giải:

Đáp án đúng là: D

Với a > 0, b > 0 ta có:

a2 + b2 = 7ab hay a2 + 2ab + b2 = 9ab ⇒ (a + b)2 = 9ab.

⇒a+b=9ab⇒a+b=3ab12 (Vì a > 0, b > 0).

Xét: loga+b=log3ab12

=log3+logab12

=log3+12loga+logb.

Bài 27 trang 38 SBT Toán 11 Tập 2: Không sử dụng máy tính cầm tay, hãy tính:

Không sử dụng máy tính cầm tay, hãy tính

Lời giải:

Không sử dụng máy tính cầm tay, hãy tính

Không sử dụng máy tính cầm tay, hãy tính

Bài 28 trang 38 SBT Toán 11 Tập 2: Tính:

Bài 28 trang 38 SBT Toán 11 Tập 2

Lời giải:

Bài 28 trang 38 SBT Toán 11 Tập 2

Bài 28 trang 38 SBT Toán 11 Tập 2

Bài 28 trang 38 SBT Toán 11 Tập 2

Giải SBT Toán 11 trang 39

Bài 29 trang 39 SBT Toán 11 Tập 2: Cho logab = 4. Tính:

Bài 29 trang 39 SBT Toán 11 Tập 2

Lời giải:

Bài 29 trang 39 SBT Toán 11 Tập 2

Bài 29 trang 39 SBT Toán 11 Tập 2

Bài 29 trang 39 SBT Toán 11 Tập 2

Bài 30 trang 39 SBT Toán 11 Tập 2: a) Cho log23 = a. Tính log1872 theo a

b*) Cho log2 = a. Tính log2050 theo a.

Lời giải:

a) log1872=log272log218=log223.32log22.32

=log223+log232log22+log232=3+2log231+2log23=3+2a1+2a.

b*) Ta có: 1 = log10 = log(2.5) = log2 + log5 nên log5 = 1 – log2 = 1 – a.

Xét: log2050=log50log20=log10.5log10.2

=log10+log5log10+log2=1+1−a1+a=2−a1+a.

Bài 31 trang 39 SBT Toán 11 Tập 2: Cho x > 0, y > 0 thoả mãn: x2 + 4y2 = 6xy. Chứng minh rằng:

2log(x + 2y) = 1 + logx + logy.

Lời giải:

Với x > 0, y > 0 ta có:

x2 + 4y2 = 6xy ⇒ x2 + 4xy + 4y2 = 10xy

⇒ (x + 2y)2 = 10xy.

Suy ra: 2log(x + 2y) = log(x + 2y)2

= log(10xy) = log10 + logx + logy

= 1 + logx + logy.

Vậy 2log(x + 2y) = 1 + logx + logy.

Bài 32 trang 39 SBT Toán 11 Tập 2: Cho a, b, c, x, y, z là các số thực dương khác 1 và logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng. Chứng minh rằng:

logby=2logax⋅logczlogax+logcz.

Lời giải:

Do logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng nên ta có:

Cho a, b, c, x, y, z là các số thực dương khác 1

Bài 33 trang 39 SBT Toán 11 Tập 2: Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ C614 có trong mẫu vật tại thời điểm t (năm) (so với thời điểm ban đầu t = 0), sau đó sử dụng công thức tính độ phóng xạ H=H0e−λt (đơn vị là Becquerel, kí hiệu Bq) với H0 là độ phóng xa ban đầu (tại thời điểm t = 0); λ=ln2T là hằng số phóng xạ, T = 5 730 (năm) (Nguồn: Vật lí 12 Nâng cao, NXBGD Việt Nam, 2014). Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ là 0,215 Bq. Biết độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq. Xác định độ tuổi của mẫu gỗ cổ đó (làm tròn kết quả đến hàng đơn vị).

Lời giải:

Chất phóng xạ có chu kì bán rã là T = 5 730 (năm).

Suy ra: λ=ln25  730.

Gọi t là độ tuổi của mẫu gỗ cổ.

Vì độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq nên ta có H0 = 0,250 Bq.

Khi khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xa là 0,215 Bq, suy ra ta có H = 0,215 Bq.

Ta có:

Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ

Vậy độ tuổi của mẫu gỗ cổ đó xấp xỉ 1 247 năm.

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 1: Phép tính lũy thừa với số mũ thực

Bài 2: Phép tính lôgarit

Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Share
facebookShare on FacebooktwitterShare on TwitteremailShare on Email
Post navigation
Previous post

Giải SGK Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Next post

Giải SGK Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm

Bài liên quan:

Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị

Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác

Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản

Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1

Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số

Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng

Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân

Leave a Comment Hủy

Mục lục

  1. Sách bài tập Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác
  2. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác
  3. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số lượng giác và đồ thị
  4. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình lượng giác cơ bản
  5. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 1
  6. Sách bài tập Toán 11 Bài 1 (Cánh diều): Dãy số
  7. Sách bài tập Toán 11 Bài 2 (Cánh diều): Cấp số cộng
  8. Sách bài tập Toán 11 Bài 3 (Cánh diều): Cấp số nhân
  9. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 2
  10. Sách bài tập Toán 11 Bài 1 (Cánh diều): Giới hạn của dãy số
  11. Sách bài tập Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
  12. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số liên tục
  13. Sách bài tập Toán 11 Bài tập cuối chương 3 (Cánh diều)
  14. Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian
  15. Sách bài tập Toán 11 Bài 2 (Cánh diều): Hai đường thẳng song song trong không gian
  16. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đường thẳng và mặt phẳng song song
  17. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng song song
  18. Sách bài tập Toán 11 Bài 5 (Cánh diều): Hình lăng trụ và hình hộp
  19. Sách bài tập Toán 11 Bài 6 (Cánh diều): Phép chiếu song song. Hình biểu diễn của một hình không gian
  20. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 4 trang 117
  21. Sách bài tập Toán 11 Bài 1 (Cánh diều): Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm
  22. Sách bài tập Toán 11 Bài 2 (Cánh diều): Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất
  23. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 5 trang 20
  24. Sách bài tập Toán 11 Bài 1 (Cánh diều): Phép tính lũy thừa với số mũ thực
  25. Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit
  26. Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit
  27. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 6
  28. Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
  29. Sách bài tập Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  30. Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  31. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7
  32. Sách bài tập Toán 11 Bài 1 (Cánh diều): Hai đường thẳng vuông góc
  33. Sách bài tập Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng
  34. Sách bài tập Toán 11 Bài 3 (Cánh diều): Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
  35. Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng vuông góc
  36. Sách bài tập Toán 11 Bài 5 (Cánh diều): Khoảng cách
  37. Sách bài tập Toán 11 Bài 6 (Cánh diều): Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
  38. Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 8

Copyright © 2025 Trang Học trực tuyến
  • Sach toan
  • Giới thiệu
  • LOP 12
  • Liên hệ
  • Sitemap
  • Chính sách
Back to Top
Menu
  • Môn Toán